Устройство современного двигателя
Содержание:
Принцип работы карбюраторного двигателя
Принцип действия карбюраторного двигателя относительно простой и складывается из четырех тактов, которые совпадают с движением вверх и вниз в последовательности один за одним:
- Первый такт — впуск; клапан впуска отворяется и в цилиндр доставляется новая смесь от системы питания.
- Второй такт — сжатие; поршень сдавливает горючую смесь в камере сгорания. Все клапаны прикрыты.
- Третий такт — расширение; происходит возгорание сдавленной горючей смеси от свечи зажигания. Смесь сжигается достаточно быстро при неизменном объеме, который соответствует объему самой камеры сжатия. Это основная характерность работы карбюраторного двигателя. При перегорании формируются газы, которые двигают поршень книзу и передают движение коленвалу.
- Четвертый такт — впрыск; коленвал вращается и выбрасывает из цилиндра отработанные газы через приоткрытый клапан выпуска.
На этом один рабочий цикл карбюраторного двигателя заканчивается.
При первом такте клапан впуска уже в открытом виде при подходе поршня и благодаря высокой скорости движения поршня рабочая смесь продвигается к цилиндру и еще какое-то время при поднятии поршня во втором такте.
Искра поджигает рабочую смесь до того, как в цилиндре образуется высокое давление. В четвертом такте клапан выпускает отработанные испарения, чем очищает цилиндр еще до подхода поршня. Однако выход газов не прекращается даже после подхода поршня. Затем происходит запуск новой порции рабочей смеси, которая опять проходит в цилиндр.
Отсюда следует, что в работе между первым и четвертым тактом единовременно открываются клапаны впуска и выпуска, то есть происходит перекрытие клапанов. За момент перекрытия цилиндр очищается и в нем происходит разрежение, которое помогает выгоднее заполнить цилиндр горючей смесью при первом такте.
В таком двигателе происходит наружное образование рабочей смеси с ее сжатием и вынужденным поджиганием. На сегодняшний день как топливо чаще используется бензин, но они могут отлично выполнять свою работу и на газу.
Также популярны дизельные двигатели, где поджигание происходит от сжатия, их принцип работы зависит от нагревания газа при сжатии. Когда сжатие повышается, температура также поднимается. В это время в камеру сгорания через форсунку происходит впрыск топлива, которое поджигается и от полученных газов поршень передвигается. Сгорание топлива происходит после начала движения поршня.
Первичные двигатели
Первыми первичными двигателями стали парус и водяное колесо. Парусом пользуются уже более 7 тысяч лет.
Водяное колесо — норию широко применяли для оросительных систем в странах Древнего мира: Египте, Китае, Индии. Водяные и ветряные колёса широко использовались в Европе в средних веках как основная энергетическая база мануфактурного производства.
Паровые машины
В середине XVII века были сделаны первые попытки перехода к машинному производству, потребовавшие создания двигателей, не зависящих от местных источников энергии (воды, ветра и прочего). Первым двигателем, в котором использовалось тепловая энергия химического топлива, стала пароатмосферная машина, изготовленная по проектам французского физика Дени Папена и английского механика Томаса Севери. Эта машина была лишена возможности непосредственно служить механическим приводом, к ней «прилагалось в комплект» водяное мельничное колесо (по-современному говоря, гидротурбина), которое вращала вода, выжимаемая паром из парового котла в резервуар водонапорной башни. Котел то подогревался паром, то охлаждался водой: машина действовала периодически.
В 1763 году русский механик Иван Иванович Ползунов изготовил по собственному проекту стационарную паровую машину непрерывного действия. В ней были сдвоены два цилиндра, поочерёдно заполнявшиеся паром, и также подающими воду на башню, но — постоянно.
К 1784 году английский механик Джеймс Уатт создал более совершенную паровую машину, названную универсальным паровым двигателем. Уатт с детства работал подручным на машине конструкции Севери. В его задачу входило постоянно переключать краны подачи пара и воды на котел. Эта однообразная работа изрядно надоела изобретателю и побудила изобрести как поршень двойного хода, так и автоматическую клапанную коробку (потом и центробежный предохранитель). В машине был предусмотрен в цилиндре жесткий поршень, по обе стороны которого поочередно подавался пар. Все происходило в автоматическом режиме и непрерывно. Поршень вращал через кривошипно—шатунную систему маховик, обеспечивающий плавность хода. Паровая машина могла теперь стать приводом различных механизмов и перестала быть привязана к водонапорной башне. Элементы, придуманные Уаттом, входили в той или иной форме во все паровые машины. Паровые машины совершенствовали и применяли для решения различных технических задач: привода станков, судов, экипажей для перевозки людей по дорогам, локомотивов на железных дорогах. К 1880 году суммарная мощность всех работавших паровых машин превысила 26 млн кВт (35 млн л. с.).
Двигатель Стирлинга
В 1816 шотландец Роберт Стирлинг предложил двигатель внешнего сгорания, называемый сейчас его именем Двигатель Стирлинга. В этом двигателе рабочее тело (воздух или иной газ) заключен в герметичный объём. Здесь осуществлен цикл по типу цикла Севери («до-Уаттовского»), но нагрев рабочего тела и его охлаждение производятся в различных объёмах машины и сквозь стенки рабочих камер. Природа нагревателя и охладителя для цикла не имеют значения, а потому он может работать даже в космосе и от любого источника тепла. КПД созданных сейчас стирлингов невелик. Теоретически он должен раза в 2 превышать КПД для ДВС, а практически — это примерно одинаковые величины. Но у стирлингов есть ряд других преимуществ, которые способствовали развитию исследований в этом направлении.
Паровая турбина
Рисунки, изображающие крыльчатое колесо, вращающееся под воздействием потока пара, известны с древних времён. Однако практические конструкции паровой турбины были созданы лишь во второй половине XIX века, благодаря развитию конструкционных материалов, позволивших достичь высоких скоростей вращения.
В 1889 году шведский инженер Карл Густав де Лаваль предложил использовать расширяющееся сопло и быстроходную турбину (до 32000 об/мин), а, независимо от него, ещё в 1884 году англичанин Чарлз Алджернон Парсонс изобрёл первую пригодную для промышленного применения реактивную турбину (более тихоходную), способную вращать судовой винт. Паровые турбины стали применять на морских судах, а с начала XX века на электростанциях. В 1960-х годах их мощность превысила 1000 МВт в одном агрегате.
Отношение диаметра цилиндра к ходу поршня
Одним из основополагающих конструктивных параметров ДВС является отношение хода поршня к диаметру цилиндра (или наоборот). Для более быстроходных бензиновых двигателей это отношение близко к 1, на дизельных моторах ход поршня, как правило, тем больше диаметра цилиндра, чем больше двигатель. Оптимальным с точки зрения газодинамики и охлаждения поршня является соотношение 1 : 1. Чем больше ход поршня, тем больший крутящий момент развивает двигатель и тем ниже его рабочий диапазон оборотов. Наоборот, чем больше диаметр цилиндра, тем выше рабочие обороты двигателя и тем ниже его крутящий момент на низких оборотах. Как правило, короткоходные ДВС (особенно гоночные) имеют больший крутящий момент на единицу рабочего объема, но на относительно высоких оборотах (больше 5000 об/мин.). При большем диаметре цилиндра/поршня сложнее обеспечить должный теплоотвод от донышка поршня ввиду его больших линейных размеров, но при высоких рабочих оборотах скорость поршня в цилиндре не превышает скорости поршня более длинноходного на его рабочих оборотах.
Строение стандартного двигателя
Разбираясь в принципах работы ДВС и других вопросах, стоит учесть, что выпускающиеся на заводах агрегаты имеют несколько:
- типов;
- конструкций.
Это приводит к тому, что элементы двигателя автомобиля могут довольно сильно различаться между собой. Но при этом основные детали, блоки и узлы остаются идентичными. Поэтому конструктивные особенности не влияют на то, как работает двигатель внутреннего сгорания.
Итак, какова же схема двигателя? Требуется сказать, что корпус объединяет массу элементов в единый и слажено функционирующий «организм». Двигатели внутреннего сгорания состоят из перечисленных ниже узлов:
- цилиндры;
- КШМ (криво-шатунный механизм);
- ГРМ.
Отдельно в устройстве стандартного ДВС выделяют сложные системы, отвечающие за слаженное и бесперебойное функционирование агрегата:
- питания – подготавливает смесь к подаче в цилиндры;
- смазки – подает смазочные материалы на необходимые узлы и элементы;
- зажигания – устанавливается только на бензиновых моделях и необходима для воспламенения смеси;
- охлаждения – поддерживает оптимальную температуру;
- электросистема – источник энергии агрегата;
- выхлопа – отводит продукты горения.
Каждый блок выполняет в строении движка свои задачи. Так как принцип работы ДВС основывается на воспламенении смеси, то цилиндры называют основным элементом всей системы, куда и поступает бензиново-воздушный состав.
В схеме двигателя КШМ выполняет роль основного трансформатора тепловой энергии в движущуюся силу, распределяющую ее на коленчатый вал.
Газораспределительный механизм (ГРМ) контролирует распахивание и закрытие следующих клапанов:
- запуска горючего, смешанного с воздухом;
- выхода отработанных газов.
Благодаря ему, гарантируется синхронность системы.
Исходя из того, как работает двигатель внутреннего сгорания, конструкторы совершенствуют модели, применяя различную комплектность цилиндров. В первых механизмах он был один. Позже начались эксперименты по усилению мощности:
- увеличение диаметра цилиндра;
- увеличение количества цилиндров.
Новые модернизированные двигатели внутреннего сгорания могут иметь до 12 цилиндров с разным расположением. Наиболее популярны расстановки:
- в ряд – наиболее простой и понятный агрегат;
- V-образный – более популярный.
В автомобилях чаще всего используют V-образные модели. Они выделяются:
- компактностью;
- производительностью;
- надежностью.
Расположение под углом конструкторы используют при установке 6 цилиндров и более.
Также встречается и следующая компоновка цилиндров:
- VR-образная – ставятся в два ряда с небольшим наклоном;
- W-образная – крепятся на один коленвал в 3-4 ряда под углом;
- U-образная – параллельная установка на два коленвала;
- оппозитная – цилиндры располагаются в одной горизонтали под углом 180 градусов друг к другу;
- встречная – поршни движутся на встречу друг другу;
- радиальная – размещение по кругу.
Последний способ применяется в авиастроении. Остальные используют автомобильные концерны.
Характеристики ДВС
Потребительские качества двигателя (принимая за образец классический поршневой или комбинированный двигатель, отдающий крутящий момент) можно охарактеризовать следующими показателями:
- Массовые показатели, в кг на литр рабочего объёма (обычно от 30 до 80) — удельная масса, и в кг на 1 л.с. (1 кВт) — удельная мощность. Они важнее для транспортных, особенно для авиационных, двигателей.
- Удельный расход топлива, г/л.с.*час (г/кВт*ч), или для конкретных видов топлив с разной плотностью и агрегатным состоянием, л/кВт*ч, м3/кВт*ч.
- Ресурс в часах (моточасах). Некоторые применения ДВС не требуют большого ресурса (пусковые ДВС, двигатели торпед), и потому в их конструкции могут отсутствовать, например, фильтры для масла и воздуха.
- Экологические характеристики (как самостоятельные, так и в составе транспортного средства), определяющие возможность его эксплуатации.
- Транспортные характеристики, определяющие кривую крутящего момента в зависимости от числа оборотов. При работе двигателя по винтовой характеристике, обычно без трансмиссии, специальная корректировка транспортной характеристики не требуется, но в автомобилях и тракторах хорошая транспортная характеристика (высокий запас крутящего момента, тихоходная настройка) позволяют уменьшить число передач в трансмиссии и облегчить управление.
- Шумность двигателя, зачастую определяемая его применением в люксовых моделях автомобилей или подводных лодках. Для снижения шумности часто снижают жёсткость подвески двигателя, усложняют схемы выпуска газов (например, выпуск газов через винт в подвесных моторах), а также капотируют.
Скоростные характеристики
ДВС, отдающие мощность на выходной вал, обычно характеризуются кривыми крутящего момента и мощности в зависимости от частоты вращения вала (от минимально устойчивых оборотов холостого хода до максимально возможных, при которых ДВС может работать без поломок). Дополнительно к двум вышеупомянутым кривым может быть представлена кривая удельного расхода топлива. По результатам анализа таких кривых определяется коэффициент запаса крутящего момента (он же коэффициент приспособляемости), и другие показатели, влияющие на конструкцию трансмиссии.
Внешняя скоростная характеристика 2,7 литрового двигателя Porsche Boxster
В настоящее время для потребителей представляют внешние скоростные характеристики с нетто-мощностью ISO-1585, согласно региональному стандарту измерения мощности ДВС (зависит от температуры, давления, влажности воздуха, применяемого топлива и наличия отбора мощности на установленные агрегаты). Двигатели американских производителей обычно испытывают по другому стандарту (SAE). Внешней характеристику называют потому, что линии мощности и крутящего момента проходят выше частичных скоростных характеристик, и нельзя получить мощность выше манипуляциями с органами подачи топлива.
Однако, в более ранних публикациях имеются скоростные характеристики, базирующиеся на измерении мощности брутто (кривая крутящего момента, соответственно, также поднимается выше).
Кроме полных, в расчётах трансмиссий транспортных средств активно используются частичные скоростные характеристики — эффективные показатели двигателя при промежуточных положениях регулятора подачи топлива (или дроссельной заслонки для бензиновых). Для транспортных средств с винтами на таких характеристиках приводят винтовые при различных положениях винта с регулируемым шагом.
Существуют и другие характеристики, не предназначенные для потребителей, например с кривыми индикаторной мощности, индикаторного расхода топлива и индикаторного крутящего момента (используемые при расчёте ДВС), а также абсолютная скоростная характеристика, показывающая максимально возможную отдачу данного двигателя, которую можно получить при подаче большего количества топлива, чем на номинальном режиме. Для дизелей имеется также линия дымления, работа за которой не допускается.
Работа на абсолютной характеристике практически (кроме пуска ДВС) не производится, поскольку при этом снижается экономичность и экологичность двигателя, сокращается ресурс (особенно для дизельных двигателей, у которых работа за пределом дымления сокращает ресурс до считанных часов).
Четвертый такт — выпуск.
Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются через выпускной трубопровод в окружающую среду. В конце такта выпуска давление газов равно 0,11 -0,12 МПа, температура 850—1200. После этого рабочий цикл дизеля повторяется.В двухтактных двигателях время, отводимое на рабочий цикл, используется более полно, так как процессы выпуска и впуска совмещены по времени с процессами сжатия и рабочего хода. Рабочий цикл происходит за 360 градусов (один оборот коленчатого вала).
При движении поршня от ВМТ к НМТ одновременно происходят процессы расширения и выпуска с продувкой цилиндра, а при обратном движении от НМТ к ВМ1 впуск и сжатие. Изменения параметров цикла (давление и температура) соответствуют изменениям параметров четырехтактного двигателя.Сравнение рабочих циклов четырех- , двухтактных двигателей показывает, что при одинаковых размерах цилиндра и частоте вращения коленчатого вала мощность двухтактных двигателей выше в 1.5—1,7 раза. Он проще по конструкции и компактнее.К недостаткам двухтактного двигателя следует отнести ограниченное время газообмена, что ухудшает очистку цилиндра от отработавших газов, увеличивает потери части свежею заряда, снижает экономичность.
Блок цилиндров
Теперь само устройство двигателя внутреннего сгорания. Основой любой установки является блок цилиндров. В нем и на нем располагаются все составные.
Конструктивные особенности блока зависят от некоторых условий – количества цилиндров, их расположения, способа охлаждения. Количество цилиндров, которые объедены в одном блоке, может варьироваться от 1 до 16. Причем блоки с нечетным количеством цилиндров встречаются редко, из выпускающихся ныне двигателей можно встретить только одно- и трехцилиндровые установки. Большинство же агрегатов идут с парным количеством цилиндров – 2, 4, 6, 8 и реже 12 и 16.
Четырёхцилиндровый блок
Силовые установки с количеством от 1 до 4 цилиндров обычно имеют рядное расположение цилиндров. Если количество цилиндров больше, их располагают в два ряда, при этом с определенным углом положения одного ряда относительно другого, так называемые силовые установки с V-образным положением цилиндров. Такое расположение позволило уменьшить габариты блока, но при этом изготовление их сложнее, чем рядным расположением.
Восьмицилиндровый блок
Существует еще один тип блоков, в которых цилиндры располагаются в два ряда и с углом между ними в 180 градусов. Эти двигатели получили название оппозитных. Встречаются они в основном на мотоциклах, хотя есть и авто с таким типом силового агрегата.
Но условие количеством цилиндров и их расположением – необязательное. Встречаются 2-цилиндровые и 4-цилиндровые двигатели с V-образным или оппозитным положением цилиндров, а также 6-цилиндровые моторы с рядным расположением.
Используется два типа охлаждения, которые применяются на силовых установках – воздушное и жидкостное. От этого зависит конструктивная особенность блока. Блок с воздушным охлаждением менее габаритный и конструктивно проще, поскольку цилиндры не входят в его конструкцию.
Блок с жидкостным же охлаждением более сложен, в его конструкцию входят цилиндры, а поверх блока с цилиндрами расположена рубашка охлаждения. Внутри ее циркулирует жидкость, отводя тепло от цилиндров. При этом блок вместе рубашкой охлаждения представляют одно целое.
Сверху блок накрывается специальной плитой – головкой блока цилиндров (ГБЦ). Она является одной из составляющих, обеспечивающих закрытое пространство, в котором производится процесс горения. Конструкция ее может быть простая, не включающая дополнительные механизмы, или же сложная.
Системы двигателя
Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:
- ГРМ (механизм регулировки фаз газораспределения);
- Система смазки;
- Система охлаждения;
- Система подачи топлива;
- Выхлопная система.
ГРМ — газораспределительный механизм
Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:
- Распределительный вал;
- Впускные и выпускные клапаны с пружинами и направляющими втулками;
- Детали привода клапанов;
- Элементы привода ГРМ.
ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.
Система смазки
В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:
- Масляный картер (поддон);
- Насос подачи масла;
- Масляный фильтр с редукционным клапаном;
- Маслопроводы;
- Масляный щуп (индикатор уровня масла);
- Указатель давления в системе;
- Маслоналивная горловина.
Система охлаждения
Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:
- Рубашка охлаждения двигателя;
- Насос (помпа);
- Термостат;
- Радиатор;
- Вентилятор;
- Расширительный бачок.
Система подачи топлива
Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:
- Топливный бак;
- Датчик уровня топлива;
- Фильтры очистки топлива — грубой и тонкой;
- Топливные трубопроводы;
- Впускной коллектор;
- Воздушные патрубки;
- Воздушный фильтр.
В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.
Выхлопная система
Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:
- Выпускной коллектор;
- Приемная труба глушителя;
- Резонатор;
- Глушитель;
- Выхлопная труба.
В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.
Виды двигателей внутреннего сгорания
Поршневой ДВС
Роторный ДВС
Газотурбинный ДВС
Поршневые двигатели — камерой сгорания служит цилиндр, возвратно-поступательное движение поршня с помощью кривошипно-шатунного механизма преобразуется во вращение вала.
Газовая турбина — преобразование энергии осуществляется ротором с клиновидными лопатками.
Роторно-поршневые двигатели — в них преобразование энергии осуществляется за счёт вращения рабочими газами ротора специального профиля (двигатель Ванкеля).
ДВС классифицируют:
- по назначению — на транспортные, стационарные и специальные.
- по роду применяемого топлива — лёгкие жидкие (бензин, газ), тяжёлые жидкие (дизельное топливо, судовые мазуты).
- по способу образования горючей смеси — внешнее (карбюратор) и внутреннее (в цилиндре ДВС).
- по объёму рабочих полостей и весогабаритным характеристикам — лёгкие, средние, тяжёлые, специальные.
Помимо приведённых выше общих для всех ДВС критериев классификации существуют критерии, по которым классифицируются отдельные типы двигателей. Так, поршневые двигатели можно классифицировать по количеству и расположению цилиндров, коленчатых и распределительных валов, по типу охлаждения, по наличию или отсутствию крейцкопфа, наддува (и по типу наддува), по способу смесеобразования и по типу зажигания, по количеству карбюраторов, по типу газораспределительного механизма, по направлению и частоте вращения коленчатого вала, по отношению диаметра цилиндра к ходу поршня, по степени быстроходности (средней скорости поршня).