Устройство и принцип работы системы cvvt
Содержание:
Принцип работы
Принцип работы системы заключается в изменении положения распределительных валов относительно шкива коленчатого вала.
Система имеет два направления работы:
- Опережение открытия клапанов.
- Запаздывание открытия клапанов.
Опережение
Масляный насос при работе ДВС создает давление, которое подается на электромагнитный клапан CVVT. ЭБУ за счёт широтно-импульсной модуляции (ШИМ) управляет положением клапана VVT. Когда необходимо отрегулировать исполнительный механизм на максимальный угол опережения, клапан перемещается и открывает масляный канал к камере опережения гидромуфты CVVT. Из камеры запаздывания жидкость в это же время начинает сливаться. Это позволяет переместить ротор с распределительным валом относительно корпуса в противоположное относительно вращения коленвала направление.
Запаздывание
Принцип аналогичен предыдущему, однако клапан-соленоид при максимальном запаздывании открывает масляный канал к камере запаздывания. В это время ротор CVVT перемещаются в сторону направления вращения коленвала.
Как двигают фазы
У разных производителей существуют различные конструкции таких систем. Одни изменяют время подъема клапанов, другие – высоту подъема, а третьи – и то, и другое. Системы изменения фаз могут устанавливаться только для впускных клапанов или и для впускных, и для выпускных. В настоящее время используется три способа изменения фаз газораспределения.
- Первый способ – поворот распредвала по ходу вращения с ростом оборотов двигателя. Таким образом, обеспечивается более раннее открытие клапанов. Основная деталь таких систем – фазовращатель (другое название – гидроуправляемая муфта). Он представляет собой ротор, смонтированный в шкиве распредвала, между которыми есть полости. Эти полости по сигналу контроллера двигателя через электромагнитный клапан заполняются маслом, что приводит к повороту распредвала. Угол поворота зависит от того, какая именно полость заполнена. Фазовращатель в большинстве случаев устанавливается только на впускной распредвал, на некоторых системах – и на выпускной. Описанный способ используется в системах VANOS и Double VANOS от BMW, VVT-i и Dual VVT-i(Variable Valve Timing with intelligence) от Toyota, VVT(Variable Valve Timing) от Volkswagen, VTC(Variable Timing Control) от Honda, CVVT(Continuous Variable Valve Timing) от Hyundai, Kia, Volvo, General Motors, VCP(Variable Cam Phases) от Renault.
- Второй способ – применение кулачков разного профиля на разных режимах работы. На малых оборотах используются кулачки, обеспечивающие «узкие» фазы, то есть малые высоту подъема и время открытия клапанов. С ростом оборотов по команде блока управления происходит переключение на «широкофазные» кулачки. Таким образом, фазы меняются ступенчато, а не плавно, как в предыдущей системе. Зато, кроме фаз, регулируется и высота подъема клапана. Разнопрофильные кулачки используют в своих системах: VTEC (Variable Valve Timing and Lift Electronic Control) от Honda, VVTL-i (Variable Valve Timing and Lift with intelligence) от Toyota, MIVEC (Mitsubishi Innovative Valve timing Electronic Control) от Mitsubishi.
- Третья, самая совершенная группа систем, плавно регулирует высоту подъема клапанов. Главное достоинство таких систем в том, что они позволяют отказаться от дроссельной заслонки на впуске. Тем самым существенно снижаются насосные потери и расход топлива. Впервые такая система под названием Valvetroniс была применена BMW. В ней между распредвалом и клапаном расположен дополнительный рычаг, один конец которого давит на коромысло клапана, а второй соединен с эксцентриковым валом. Проворачивая этот вал с помощью электромотора, система управления тем самым меняет наклон рычага и его плечо. Увеличение плеча приводит к увеличению подъема клапана и количества воздуха, попадающего в цилиндры. Высота подъема регулируется в пределах от 0,5 до 12 мм.
Вслед за BMW аналогичные системы создали Valvematic от Toyota, VEL (Variable Valve Event and Lift System) от Nissan, MultiAir от Fiat, VTI (Variable Valve and Timing Injection) от Peugeot.
В системе MultiAir используется один распредвал, который приводит и впускные, и выпускные клапана. Но если выпускные клапана механически управляются кулачками, то на впускные воздействие от кулачков передается через специальную электрогидравлическую систему. Именно в ней и состоит новизна. Впускные кулачки нажимают на поршни, а те через электромагнитный клапан передают усилие на рабочие гидроцилиндры, которые уже воздействуют на впускные клапана. Главный узел – именно клапан, регулирующий давление в системе. Он имеет только два положения: открыт-закрыт. Если он открыт, давление в системе отсутствует, и усилие на клапан не передается. Поэтому, управляя моментом и длительностью открытия электромагнитного клапана за то время, пока кулачок воздействует на поршенек, можно добиться любого алгоритма открытия впускных клапанов. А значит, ширину фаз можно плавно регулировать от 0 до 100%. Максимальная ширина фазы определяется профилем впускного кулачка распредвала.
А какое отношение все вышеописанное имеет к экологии? Системы изменения фаз газораспределения, оптимизируя процесс сгорания топлива, тем самым снижают его расход, а, значит и количество вредных выбросов.
Разновидности VTEC
На сегодняшний день существует несколько разновидностей системы VTEC. Первая категория рассчитана на увеличение мощности. Второй, VTEC-E, ставились совсем иные задачи — экономия топлива, о чем и говорит приставка «E» — econom. Итак, разновидности:
-
-
- DOHC VTEC 1989-2001 гг, cамый мощный в семействе VTEC до 2001 года
- SOHC VTEC 1991-2001 гг, средняя, более простая конструкция по сравнению с DOHC VTEC, но и менее мощная
- SOHC VTEC-E 1991-2001 гг, самый экономичный VTEC
- 1995-2001 гг, совместил SOHC VTEC и VTEC-E, в отличие от них различает низкие, средние и высокие обороты
- DOHC і-VTEC c 2001 года
- c 2006 года
- 3-stage i-VTEC (только на «гибридах») c 2006 года
-
Особенность данного двигателя заключается в том, что в городском цикле у автомобиля с системой VTEC-E, расход топлива составляет около 6,5-7 литров бензина на 100 км пути. Это поистине выдающийся результат, учитывая то, что такие двигатели Honda развивают мощность 115 «лошадиных сил». Но автомобили с таким двигателем лишены драйверских ощущений.
Такой результат достигается за счет того, что при небольших оборотах двигатель работает на обедненной топливовоздушной смеси, которая поступает в его цилиндры только через один впускной клапан. Это происходит по причине того, что на втором клапане, кулачек управляющий открытием и закрытием клапана, имеет профиль кольца и поэтому реально работает только один клапан.
За счёт несимметричности потока поступающей горючей смеси (один клапан закрыт, а второй открыт) возникают завихрения, происходит лучше и равномернее заполнение камеры сгорания, что позволяет двигателю работать на довольно бедной смеси. При увеличении оборотов (2500 оборотов и выше) срабатывает система VTEC, синхронизирующий шток под давлением масла перемещается, и рокер первичного клапана входит в зацепление с рокером вторичного клапана и оба клапана работают синхронно.
Фазы газораспределения
При рассмотрении рабочих циклов поршневых двигателей условно принималось, что открытие и закрытие клапанов происходит в момент нахождения поршня в верхней или нижней мертвой точке (ВМТ или НМТ). В действительности, при работе реальных двигателей, клапаны открываются с опережением и закрываются с запаздыванием относительно мертвых точек, за счет чего достигается значительное улучшение наполнения цилиндров свежим зарядом и эффективное удаление из них отработавших газов.
Моменты открытия и закрытия клапанов, выраженные в углах поворота коленчатого вала по отношению к начальным или конечным моментам соответствующих тактов, называются фазами газораспределения.
Как известно, основная функция механизма газораспределения — обеспечить максимальную эффективность наполнения и очистки цилиндра во время работы двигателя. От того, насколько грамотно подобраны фазы газораспределения, зависит экономичность и мощность двигателя, а также его тяговые и динамические характеристики.
В двигателях без наддува впускной клапан открывается за 10…30˚ поворота коленчатого вала до прихода поршня в ВМТ и закрывается через 50…80˚ после прохождения поршнем НМТ. Выпускной клапан открывается за 40…70˚ до НМТ и закрывается после прохождения поршнем ВМТ через 10…50˚ поворота коленчатого вала. Чем быстроходнее двигатель, тем больше значение этих углов (шире фазы газораспределения).
Открытое состояние впускного клапана в начале такта сжатия обеспечивает продолжение наполнения цилиндра из-за инерции свежего заряда и разности давления окружающей среды и давления в цилиндре в начале сжатия. Опережение открытия впускного клапана рассчитывают так, чтобы к моменту прихода поршня в ВМТ клапан был уже открыт.
Предварение открытия выпускного клапана до прихода поршня в нижнюю мертвую точку (НМТ) обеспечивает очистку цилиндра на начальном этапе вследствие избыточного давления в цилиндре, поэтому работа поршня по выталкиванию газов при такте выпуска значительно уменьшается, что способствует повышению мощности двигателя.
Так как впускной клапан открывается в конце выпуска, а выпускной закрывается в начале впуска, то возникает период времени, когда оба клапана одновременно открыты. Этот период называется перекрытием клапанов. В двигателях с наддувом эти углы увеличивают. Во время перекрытия клапанов, когда одновременно в цилиндр поступает свежий заряд, а через выпускной клапан удаляются отработавшие газы, происходит продувка цилиндров, которая улучшает газообмен. Очевидно, что наддув эффективен для дизельных двигателей, поскольку продувка цилиндров в них осуществляется чистым воздухом, а не рабочей смесью, как в карбюраторных двигателях.
Диаграмма фаз газораспределения показана на рис. 1.
Фазы газораспределения зависят от профиля кулачка распределительного вала и взаимного расположения кулачков. Если профили впускных и впускных кулачков одинаковы, то продолжительность открытого состояния клапанов тоже будет одинакова.
***
Диагностика ГРМ
Газораспределительный механизм имеет 2 свойственные неполадки — неплотное примыкание клапанов к гнездам и невозможность полностью открыть клапаны.
Неплотное примыкание клапанов к гнездам обнаруживается по таким показателям: хлопки, возникающие иногда во впускной либо выпускной трубе, уменьшение мощности мотора. Факторами неплотного закрытия клапанов могут быть:
- возникновение нагара на поверхности клапанов и гнезд;
- формирование раковин на рабочих фасках и искривление головки клапана;
- неисправность пружин клапанов.
Неполное открытие клапанов сопровождается стуком в троящем моторе и уменьшением его мощности. Данная поломка возникает в следствии значительного промежутка меж стержнем клапана и носком коромысла. К характерным поломкам для ГРМ нужно причислить кроме того изнашивание шестерен распредвала, толкателей, направляющих клапана, смещение распредвала и изнашивание втулок и осей коромысел.
Практика демонстрирует, что на газораспределительный механизм приходится примерно четвертая часть всех отказов мотора, а уже на предотвращение этих отказов и восстановление ГРМ уходит 50% трудоёмкости обслуживания и ремонтных работ. Для диагностирования поломок применяют следующие параметры:
- определяют фазы газораспределительного механизма автомобиля;
- измеряют тепловой зазор между клапаном и коромыслом;
- измеряют промежуток между клапаном и седлом.
Измерение фаз газораспределения
Подобное диагностирование ГРМ двигателя выполняется на заглушенном моторе с помощью особого набора устройств, среди которых имеются указатель, моментоскоп, малка-угломер и прочие дополнительные приборы. Для того, чтобы фиксировать период раскрытия впускного клапана на 1-ом цилиндре, необходимо покачивать вокруг своей оси коромысло, а далее направить коленвал мотора до момента появления зазора меж клапаном и коромыслом. Малка-угломер для замера разыскиваемого зазора ставится прямо на шкив коленвала.
Измерение теплового промежутка между клапаном и коромыслом
Тепловой зазор измеряют при помощи набора щупов либо иного особого устройства. Это набор из металлических пластинок длиной в 100мм, толщина которых обязана быть не больше 0,5мм. Коленвал мотора поворачивают вплоть до верхней предельной точки, в период такта сжатия подобранного для контроля цилиндра. Непосредственно благодаря щупам разной толщины, поочередно вставляемым в сформировавшееся отверстие, и измеряется зазор.
Определение промежутка между клапаном и седлом
Его можно оценить по объему воздуха, который будет выходить через уплотнитель перекрытых клапанов. Эта процедура прекрасно объединяется с чисткой форсунок. Когда они уже сняты, убирают валики коромысел и прикрывают все клапаны. Затем в камеру сгорания под большим давлением происходит подача сжатого воздуха. Поочередно на любом из контролируемых клапанов ставят устройство, которое позволяет измерить расход воздуха. Если потеря воздуха превысит разрешенную, выполняется ремонт газораспределительного механизма.
Система на основе гидроуправляемой муфты
Широкое распространение получили системы изменения фаз газораспределения, принцип работы которых основан на осуществлении поворота распредвала. К таким схемам управления фазами газораспределения относят: японскую систему VVT-i, Dual VVT-i, решение немецкого концерна BMW под названием VANOS, Double VANOS, схему VVT от Volkswagen, управление фазами газораспределения VTEC от Honda, систему CVVT брендов Hyundai, Kia и концерна GM, регулировку фаз VCP от Renault и т.д.
Работа указанных выше систем основывается на небольшом повороте распредвала по ходу его вращения. Такой способ позволяет добиться раннего открытия клапанов сравнительно с их базовым начальным положением. Данный тип систем изменения фаз газораспределения конструктивно состоит из специальной муфты, которая управляется гидравлическим способом, а также дополнительной системы управления указанной муфтой. Гидроуправляемая муфта среди автомехаников получила название фазовращатель.
Поворот распредвала осуществляется при помощи электроники управления и гидравлики, а сама система чаще всего затрагивает только впускные клапаны. Рост оборотов ДВС приводит к тому, что фазовращатель осуществляет проворот распредвала по ходу его вращения, впускные клапана открываются раньше и цилиндры намного более эффективно наполняются рабочей смесью в режиме высоких оборотов.
Получается, гидроуправляемая муфта реализует поворот распредвала ГРМ. Данная муфта конструктивно включает в себя:
- ротор, который соединен с распредвалом;
- корпус, которым выступает шкив привода распредвала;
В определенные полости, которые расположены между ротором и корпусом-шкивом, попадает моторное масло из системы смазки ДВС. Масло в муфту подается по особым каналам. Когда моторное масло заполняет одну или другую полость муфты, осуществляется поворот ротора по отношению к корпусу. Этот поворот ротора означает, что и распределительный вал будет повернут на необходимый угол.
Чаще всего местом установки гидроуправляемой муфты становится привод того распределительного вала, который отвечает за работу впускных клапанов. Встречаются также конструкции ДВС, когда подобные муфты-фазовращатели стоят как на впускном распредвале, так и на выпускном. Данное решение позволяет шире и эффективнее регулировать параметры работы ГРМ на впуске и выпуске, но усложняет механизм.
Электронное управление автоматически регулирует работу гидроуправляемой муфты. Система такого управления включает в себя:
- группу входных датчиков;
- электронный блок управления;
- список исполнительных устройств;
Система управления получает показания от датчика Холла, который производит оценку положения распредвалов. Дополнительно задействованы и другие датчики, которые используются ЭБУ для управления работой всего двигателя.
К таковым относят датчик, измеряющий частоту вращения коленвала, температурный датчик охлаждающей жидкости (ОЖ), датчик расхода воздуха и другие. Сигналы от этих датчиков подаются в ЭБУ, который после отправляет соответствующий сигнал на специальное управляющее (исполнительное) устройство.
Таким устройством, на которое воздействует электронный блок управления двигателем, является электромагнитный клапан (электрогидравлический распределитель). Клапан представляет собой распределитель, который при необходимости открывает доступ потоку моторного масла к гидроуправляемой муфте, а также реализует отвод масла от фазовращателя. Это зависит от того, в каком режиме работает силовой агрегат.
Данная схема изменения фаз газораспределения с использованием муфты задействуется в момент работы двигателя на холостом ходу, (мотор работает на самых низких оборотах), в режиме максимальной мощности на высоких оборотах, а также в том режиме, когда осуществлен выход ДВС на максимум крутящего момента.
Фазы газораспределения и круговая диаграмма газораспределения двигателя
содержание ..
10
11
12
13
14
15
16
17
18
19 20 ..
12.
Фазы газораспределения
и круговая диаграмма газораспределения двигателя
Продолжительность открытия
впускных и выпускных клапанов, выраженная в градусах угла поворота коленчатого
вала относительно мертвых точек, называется фазами газораспределения.
Наивысшие
мощностные показатели работы двигателя могут быть достигнуты при наилучшем
наполнении цилиндров горючей смесью и наиболее полной их очистке от отработавших
газов. Поэтому продолжительность фаз впуска и выпуска установлена больше 180°
из-за того, что моменты открытия и закрытия клапанов не совпадают с положениями
поршня в верхней и нижней мертвых точках. Так у двигателей заднеприводных
автомобилей ВАЗ, впускной клапан открывается в конце такта выпуска до прихода
поршня в ВМТ с опережением на 12° (рис. 2.23, а) и 33° (рис. 2.23, б) у
двигателей переднеприводных автомобилей ВАЗ, а закрывается в начале такта сжатия
после прихода поршня в НМТ с запаздыванием соответственно на 40 и 79°.
Рис. Фазы газораспределения
двигателей
Выпускной клапан открывается в
конце такта рабочего хода до прихода поршня в НМТ с опережением на 42 и 47°, а
закрывается в начале такта впуска после прихода поршня в ВМТ с запаздыванием
соответственно на 10 и 17°.
13. Назначение,
классификация систем питания поршневых двигателей их конструктивные особенности.
13.1. Характеристика
системы питания двигателей
Системой
питания называется совокупность
приборов и устройств, обеспечивающих подачу топлива и воздуха к цилиндрам
двигателя и отвод от цилиндров отработавших газов. Система питания служит для
приготовления горючей смеси, необходимой для работы двигателя.
Горючей
называется смесь топлива и
воздуха в определенных пропорциях.
Двигатели автомобилей
работают на рабочей смеси.
Рабочей
называется смесь топлива,
воздуха и отработавших газов, образующаяся в цилиндрах при работе двигателя.
В зависимости от места и
способа приготовления горючей смеси двигатели автомобилей могут иметь различные
системы питания (рис. 37).
Рис. 37.Типы систем питания
В ДВС применяются: система
приготовления горючей смеси в карбюраторе; система приготовления горючей смеси
во впускном трубопроводе; в цилиндре ДВС. Система питания с приготовлением
горючей смеси в специальном приборе — карбюраторе применяется в бензиновых
двигателях, которые называются карбюраторными.
Система питания с
приготовлением горючей смеси во впускном трубопроводе также применяется в
бензиновых двигателях. Для приготовления горючей смеси в быстро движущийся поток
воздуха во впускном трубопроводе под давлением из форсунок впрыскивается
мелкораспыленное топливо. Топливо перемешивается с воздухом, и образованная
горючая смесь поступает в цилиндры двигателя.
Система питания с
приготовлением горючей смеси непосредственно в цилиндрах двигателя применяется
как в дизелях, так и в бензиновых двигателях. Приготовление горючей смеси
происходит внутри цилиндров двигателя путем впрыска из форсунок под давлением
мелкораспыленного топлива в сжимаемый в цилиндрах воздух. При этом, если в
дизелях происходит самовоспламенение образованной рабочей смеси от сжатия, то в
бензиновых двигателях рабочая смесь в цилиндрах воспламеняется принудительно от
свечей зажигания.
содержание ..
10
11
12
13
14
15
16
17
18
19 20 ..
Принцип действия VVT
Суть работы системы VVT в том, чтобы в реальном времени, ориентируясь на режим работы двигателя, корректировать фазы открытия клапанов. В зависимости от конструктивных особенностей каждой из систем, реализовывается это несколькими путями:
- поворотом распределительного вала относительно шестерни распредвала;
- включением в работу на определенных оборотах кулачков, форма которых подходит для мощностных режимов;
- изменением высоты подъема клапанов.
Наибольшее распространение получили системы, в которых регулировка фаз осуществляется изменением углового положения распределительного вала относительно шестерни. Несмотря на то что в работу разных систем положен схожий принцип, многие автоконцерны используются индивидуальные обозначения.
- Рено – Variable Cam Phases (VCP).
- БМВ – VANOS. Как и у большинства автопроизводителей, изначально подобной системой укомплектовывался только распределительный вал впускных клапанов. Система, в которой гидромуфты изменения фаз газораспределительного механизма устанавливается и на выпускной распредвал, называется Double VANOS.
- Тойота – Variable Valve Timing with intelligence (VVT-i). Как в случае с БМВ, наличие системы на впускном и выпускном распредвалах именуется Dual VVT.
- Хонда – Variable Timing Control (VTC).
- Фольксваген в данном случае поступили более консервативно и выбрали международное название – Variable Valve Timing (VVT).
- Хюндай, Киа, Вольво, GM – Continuous Variable Valve Timing (CVVT).
Как фазы влияют на работу двигателя
Характер поведения газов внутри ДВС изменяется в зависимости от режима работы мотора. К примеру, на холостых оборотах скорость движения поршней значительно ниже, чем в режиме работы на максимальных оборотах. Соответственно, колебания газовой среды во впускном и выпускном коллекторах значительно зависят от режимной точки работы двигателя. Упомянутые колебания способны как приносить пользу, создавая резонансный наддув (подробней об акустическом наддуве в статье о системе изменения геометрии впускного коллектора), так и вред – паразитные колебания, застои. Именно поэтому скорость и эффективность наполнения цилиндров в разных режимных точках работы двигателя значительно отличаются.
На низких оборотах максимальное наполнение цилиндров будет обеспечивать позднее открытие выпускного клапана и раннее закрытие впускного. В таком случае перекрытие клапанов (положение, в котором выпускные и впускные клапаны одновременно открыты) минимально, поэтому исключается возможность выталкивания оставшихся в цилиндре выхлопных газов обратно во впуск. Именно из-за широкофазных («верховых») распределительных валов на форсированных моторах часто приходится устанавливать повышенные обороты холостого хода.
На высоких оборотах для получения максимальной отдачи от двигателя фазы должны быть максимально широкими, так как за единицу времени поршни будут прокачивать намного больше воздуха. При этом перекрытие клапанов будет положительно влиять на продувку цилиндров (выход оставшихся выхлопных газов) и последующую наполняемость.
Именно поэтому установка системы, позволяющей подстроить фазы газораспределения, а в некоторых системах и высоту подъема клапанов, под режим работы двигателя, делает двигатель эластичней, мощней, экономичней и в то же время дружелюбней к окружающей среде.