Вязкость воды. кинематическая вязкость воды. динамическая вязкость воды
Содержание:
- Определение вязкости масла
- Вязкость газа
- Вязкость аморфных материалов
- Сила вязкого трения
- Вязкость некоторых веществ
- Вязкость мазута
- Вязкость гудрона
- Динамическая вязкость
- Типы вискозиметров
- Вискозиметры
- Вязкость крови
- Физические и теплофизическине свойства водных растворов глицерина
- Плотность водного раствора глицерина в зависимости от температуры и концентрации. Таблица.
- Концентрация глицерина по массе и по объёму в водном растворе
- Температура кипения смеси глицерина с водой (при нормальном атмосферном давлении)
- Температура замерзания смеси глицерина с водой (при нормальном атмосферном давлении)
- Вязкость сахарного сиропа
- Вязкость меда
- Вязкость аморфных материалов
- Вязкость клея
- Сила внутреннего трения в жидкости
- Немного о вязкости смазочных жидкостей
Определение вязкости масла
О том, что любой смазочный материал должен препятствовать такому явлению, как сухое трение между движущимися и соприкасающимися деталями, знают даже школьники. В отношении автомобильного двигателя задача масла соответствующая – уменьшить силу трения в цилиндропоршневой группе при обеспечении максимальной герметичности цилиндров. Решение этой задачи не выглядит тривиальным, поскольку силовой агрегат вынужден работать в очень широком температурном диапазоне, от минусовых (холодный двигатель, пуск зимой) до плюс 300ºС – такой режим характерен для некоторых узлов прогретого мотора.
Отметим, что многие водители убеждены, что та температура, которая отображается на шкале прибора, измеряет температуру самого двигателя. Это, конечно же, заблуждение – датчик измеряет только температуру тосола. А она действительно на прогретом моторе практически одинакова во всём контуре и составляет примерно 90 градусов. Узлы же силового агрегата греются по-разному. Соответственно, и температура моторного масла тоже «гуляет», причём в достаточно широких пределах, доходя до значений порядка 150ºС.
А поскольку современные двигатели представляют собой достаточно сложную конструкцию, их производители рекомендуют использовать смазочные жидкости с вполне определёнными эксплуатационными характеристиками. Именно они обеспечивают максимально возможный КПД двигателя за счёт уменьшения силы трения, способствуя снижению износа трущихся деталей при среднестатистических нагрузках на мотор.
И важнейшей из этих характеристик является вязкость ММ. Самое простое и понятное определение вязкости следующее: это способность масла сохранять свою текучесть в заданных условиях работы, оставаясь на поверхности трущихся деталей. Добиться этого не сложно, если бы не динамически изменяемый температурный режим: на непрогретом двигателе он один, при работе в штатном режиме – другой – при повышенных нагрузках – третий.
Понятно, что изобрести некий универсальный состав, который бы одинаково хорошо работал независимо от внешних условий, невозможно.
А чтобы и автопроизводители, и потребители имели возможность как-то оценивать вязкость конкретных масел, Ассоциация автоинженеров США (SAE) разработала и внедрила классификацию ММ по их вязкости, в соответствии с определёнными температурными режимами работы. Другими словами, классификация упрощает выбор масла в зависимости от предпочтительного режима эксплуатации автомобиля.
У многих водителей вызывает затруднение расшифровка вязкости масла, указываемая на маркировке смазочных жидкостей для мотора в соответствии с классификацией по SAE. Как правило она начинается с одной или двух цифр, за которыми следует буква W, а через тире следует ещё одна пара цифр.
Рассмотрим на простом и доступном уровне, что означают эти цифры в отношении вязкости масла. То, что стоит до буквы W – так называемая низкотемпературная вязкость, указывающая на возможность запуска мотора при определённой отрицательной температуре (вычислить её можно, отняв от указанной цифры значение 40). То есть 5W обозначает, что такая жидкость обеспечивает беспроблемный пуск двигателя при температуре не ниже минус 40 градусов.
Отметим, что данный показатель касается только нижнего порога температур для холодного мотора, не влияя на рабочие характеристики масла, используемого на горячем силовом агрегате. Но опять же, производители масел рассчитывают этот параметр на основании испытаний на конкретных моторах, поэтому он является, так сказать, усреднённым. В действительности всё зависит от конкретного мотора, поэтому ориентироваться нужно на рекомендации автопроизводителя, а не на маркировку. Отметим, что, если в конкретном регионе максимальные морозы не превышают -20°С, можно использовать ММ с практически любым префиксом, поскольку масла с индексом, большим 20W, встречаются на рынке очень редко.
Вторая группа цифр указывает на высокотемпературный показатель вязкости, однако здесь нет прямой зависимости от температуры. Он обозначает некий обобщённый параметр, характеризующий минимальную/максимальную вязкость ММ при функционировании в рабочем диапазоне температур (а это в среднем 100-150 градусов). Чем выше этот показатель, тем больше вязкость масла при работе в более высоком температурном режиме. А слишком жидкое масло не сможет обеспечить выполнение своих непосредственных обязанностей – смазывать трущиеся поверхности. Так что интерпретация второго пары цифр даже среди специалистов вызывает определённые разногласия, и совет придерживаться рекомендаций автопроизводителей здесь ещё более актуален.
Вязкость газа
Газ — это такое агрегатное состояние вещества, при котором связи между его частицами очень слабые, а сами они подвижны, почти свободно, хаотически перемещаются в промежутках между столкновениями, при которых резко меняют характер своего движения.
За счет вязкости газа выравниваются скорости движения различных его слоев. Именно поэтому, например, ветер со временем затихает.
Примечательно, что при повышении температуры вязкость газов в отличие от жидкостей возрастает. Связано это с тем, что интенсивность беспорядочного теплового движения молекул при нагревании увеличивается, они перемещаются быстрее.
Динамическая вязкость основных газов имеет следующие показатели при 0 °С:
- воздух — 1,73•10-5 Па•с;
- аммиак — 0,92•10-5 Па•с;
- водород — 0,84•10-5 Па•с;
- углекислый газ — 1,36•10-5 Па•с;
- неон — 2,98•10-5 Па•с (самый вязкий газ);
- гелий — 1,8•10-5 Па•с;
- азот — 1,66•10-5 Па•с;
- кислород — 1,95•10-5 Па•с;
- ксенон — 2,12•10-5 Па•с;
- хлор — 1,23•10-5 Па•с;
- метан — 1,03•10-5 Па•с;
- пропан — 0,75•10-5 Па•с.
Вязкость аморфных материалов
Вязкость аморфных материалов (например, стекла или расплавов) — это термически активизируемый процесс:
- η(T)=Aexp(QRT),{\displaystyle \eta (T)=A\exp \left({\frac {Q}{RT}}\right),}
где
- Q{\displaystyle Q} — энергия активации вязкости (Дж/моль);
- T{\displaystyle T} — температура (К);
- R{\displaystyle R} — универсальная газовая постоянная (8,31 Дж/моль·К);
- A{\displaystyle A} — некоторая постоянная.
Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости Q{\displaystyle Q} изменяется от большой величины QH{\displaystyle Q_{H}} при низких температурах (в стеклообразном состоянии) на малую величину QL{\displaystyle Q_{L}} при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда (QH−QL)<QL{\displaystyle (Q_{H}-Q_{L})<Q_{L}}, или ломкие, когда (QH−QL)⩾QL{\displaystyle (Q_{H}-Q_{L})\geqslant Q_{L}}. Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса RD=QHQL{\displaystyle R_{D}={\frac {Q_{H}}{Q_{L}}}}: сильные материалы имеют RD<2{\displaystyle R_{D}<2}, в то время как ломкие материалы имеют RD⩾2{\displaystyle R_{D}\geqslant 2}.
Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением
- η(T)=A1T(1+A2expBRT)(1+CexpDRT){\displaystyle \eta (T)=A_{1}T\left(1+A_{2}\exp {\frac {B}{RT}}\right)\left(1+C\exp {\frac {D}{RT}}\right)}
с постоянными A1{\displaystyle A_{1}}, A2{\displaystyle A_{2}}, B{\displaystyle B}, C{\displaystyle C} и D{\displaystyle D}, связанными с термодинамическими параметрами соединительных связей аморфных материалов.
В узких температурных интервалах недалеко от температуры стеклования Tg{\displaystyle T_{g}} это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.
Пример вязкости стёкол
Если температура существенно ниже температуры стеклования, T<Tg{\displaystyle T<T_{g}}, двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса
- η(T)=ALTexp(QHRT){\displaystyle \eta (T)=A_{L}T\exp \left({\frac {Q_{H}}{RT}}\right)}
с высокой энергией активации QH=Hd+Hm{\displaystyle Q_{H}=H_{d}+H_{m}}, где Hd{\displaystyle H_{d}} — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а Hm{\displaystyle H_{m}} — энтальпия их движения. Это связано с тем, что при T<Tg{\displaystyle T<T_{g}} аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.
При T≫Tg{\displaystyle T\gg T_{g}} двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса
- η(T)=AHTexp(QLRT),{\displaystyle \eta (T)=A_{H}T\exp \left({\frac {Q_{L}}{RT}}\right),}
но с низкой энергией активации QL=Hm{\displaystyle Q_{L}=H_{m}}. Это связано с тем, что при T≫Tg{\displaystyle T\gg T_{g}} аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.
Сила вязкого трения
Сила вязкого трения F, действующая на жидкость, пропорциональна (в простейшем случае сдвигового течения вдоль плоской стенки) скорости относительного движения v тел и площади S и обратно пропорциональна расстоянию между плоскостями h:
F→∝−v→⋅Sh{\displaystyle {\vec {F}}\propto -{\frac {{\vec {v}}\cdot S}{h}}}
Коэффициент пропорциональности, зависящий от природы жидкости или газа, называют коэффициентом динамической вязкости. Этот закон был предложен Исааком Ньютоном в 1687 году и носит его имя (закон вязкости Ньютона). Экспериментальное подтверждение закона было получено в начале XIX века в опытах Кулона с крутильными весами и в экспериментах Хагена и Пуазёйля с течением воды в капиллярах.
Качественно существенное отличие сил вязкого трения от сухого трения, кроме прочего, то, что тело при наличии только вязкого трения и сколь угодно малой внешней силы обязательно придет в движение, то есть для вязкого трения не существует трения покоя, и наоборот — под действием только вязкого трения тело, вначале двигавшееся, никогда (в рамках макроскопического приближения, пренебрегающего броуновским движением) полностью не остановится, хотя движение и будет бесконечно замедляться.
Вязкость некоторых веществ
Для авиастроения и судостроения наиболее важно знать вязкости воздуха и воды.
Вязкость воздуха
Зависимость вязкости сухого воздуха от давления при температурах 300, 400 и 500 K
Вязкость воздуха зависит в основном от температуры.
При 15,0 °C вязкость воздуха составляет 1,78⋅10−5 кг/(м·с) = 17,8 мкПа·с = 1,78⋅10−5 Па·с. Можно найти вязкость воздуха как функцию температуры с помощью программ расчёта вязкостей газов.
Вязкость воды
Зависимость динамической вязкости воды от температуры в жидком состоянии (Liquid Water) и в виде пара (Vapor)
Динамическая вязкость воды составляет 8,90·10−4 Па·с при температуре около 25 °C. Как функция температуры: T = A × 10B/(T−C), где A = 2,414·10−5 Па·с, B = 247,8 K, C = 140 K.
Значения динамической вязкости жидкой воды при разных температурах вплоть до точки кипения приведены в таблице:
Температура, °C | Вязкость, мПа·с |
---|---|
10 | 1,308 |
20 | 1,002 |
30 | 0,7978 |
40 | 0,6531 |
50 | 0,5471 |
60 | 0,4668 |
70 | 0,4044 |
80 | 0,3550 |
90 | 0,3150 |
100 | 0,2822 |
Динамическая вязкость разных веществ
Ниже приведены значения коэффициента динамической вязкости некоторых ньютоновских жидкостей:
Газ | при 0 °C (273 K), мкПа·с | при 27 °C (300 K), мкПа·с |
---|---|---|
воздух | 17,4 | 18,6 |
водород | 8,4 | 9,0 |
гелий | 20,0 | |
аргон | 22,9 | |
ксенон | 21,2 | 23,2 |
углекислый газ | 15,0 | |
метан | 11,2 | |
этан | 9,5 |
Жидкость | Вязкость, Па·с | Вязкость, мПа·с |
---|---|---|
ацетон | 3,06·10−4 | 0,306 |
бензол | 6,04·10−4 | 0,604 |
кровь (при 37 °C) | (3—4)·10−3 | 3—4 |
касторовое масло | 0,985 | 985 |
кукурузный сироп | 1,3806 | 1380,6 |
этиловый спирт | 1.074·10−3 | 1.074 |
этиленгликоль | 1,61·10−2 | 16,1 |
глицерин (при 20 °C) | 1,49 | 1490 |
мазут | 2,022 | 2022 |
ртуть | 1,526·10−3 | 1,526 |
метиловый спирт | 5,44·10−4 | 0,544 |
моторное масло SAE 10 (при 20 °C) | 0,065 | 65 |
моторное масло SAE 40 (при 20 °C) | 0,319 | 319 |
нитробензол | 1,863·10−3 | 1,863 |
жидкий азот (при 77K) | 1,58·10−4 | 0,158 |
пропанол | 1,945·10−3 | 1,945 |
оливковое масло | 0,081 | 81 |
пек | 2,3·108 | 2,3·1011 |
серная кислота | 2,42·10−2 | 24,2 |
вода | 8,94·10−4 | 0,894 |
Вязкость мазута
Мазут является продуктом первичной нефтепереработки. Вязкость является важнейшим критерием его эксплуатации, транспортировки, перекачивания, сжигания. Мазут бывает высоковязким и маловязким. В первом случае он содержит больше смолистых веществ и парафина.
Согласно показателю вязкости выделяют несколько марок мазута, каждая из них имеет свою температуру застывания вещества. Наиболее вязкие сорта застывают уже при 25 °С. Чтобы перекачивать такой продукт, его приходится подогревать до 60–70 °С. В подогреваемом мазуте начинают плавиться церезины, твердые парафины, но прекращение термообработки вновь приводит к увеличению вязкости, она быстро возвращается на исходный уровень.
Для перекачивания мазута подходят шестеренчатые, винтовые, ламинарные, реже центробежные насосы.
Вязкость гудрона
Гудрон — это остаток, образующийся в процессе отгонки из нефти фракций, которые выкипают до 450–600 °С под вакуумом при атмосферном давлении. Выход данного вещества составляет 10–45 % от нефтяной массы. Гудрон представляет собой очень вязкую жидкость черного цвета либо твердую асфальтоподобную субстанцию с блестящим изломом. Вещество содержит нефтяные смолы, углеводороды (парафиновые, нафтеновые, ароматические), карбоиды, карбены, асфальтены, небольшой объем примесей металлов, которые содержались в нефти.
В зависимости от температуры кинематическая вязкость гудрона составляет 40–91 сСт.
Применяется вещество в основном в дорожном строительстве, кровельных работах, производстве малозольного кокса, в качестве смягчителя в резиновой промышленности.
Динамическая вязкость
Динамическая вязкость определяет величину сопротивления текучести жидкости при перемещении ее слоя площадью 1 см2 на расстояние в 1 см со скоростью 1 см/сек. В СИ (Международной системе единиц) данный показатель измеряется в Па•с (паскаль•секунда). В системе же СГС единицей измерения вязкости является пуаз (в честь Ж. Пуазейля, французского физика).
Чем выше вязкость жидкости, тем, соответственно, больше время ее истечения. Например, чем дольше по времени краска, нефть, смола, мед или любая другая жидкая среда будет вытекать через воронку, тем больше будет вязкость данного вещества.
С точки зрения физики динамическая вязкость обозначает потерю давления за единицу времени (поэтому в системе СИ этот параметр и измеряется в Па•с). У жидкостей данный параметр снижается при росте температуры (то есть когда среда нагревается, она течет легче) и повышается при увеличении давления.
Типы вискозиметров
В зависимости от способа измерения вискозиметры подразделяются на капиллярные (вискозиметры истечения), шариковые, ротационные, вибрационные и ультразвуковые.
При пользовании капиллярными вискозиметрами измеряется время истечения известного количества (объема) жидкости сквозь капиллярные трубки определенного диаметра. Стеклянные капиллярные вискозиметры чаще других используются в практике химических лабораторий.
При пользовании шариковыми вискозиметрами измеряется скорость падения шарика в исследуемой жидкости — она тем меньше, чем больше вязкость жидкости.
В ротационных вискозиметрах измеряется крутящий момент или угловая скорость вращения одного из двух соосных тел, в зазоре между которыми находится испытуемая жидкость. Область измерения вязкости 0,5-1000000 Па*с. Они широко используются для определения вязкости высокомолекулярных жидкостей и растворов полимерных соединений.
Измерение вязкости вибрационными вискозиметрами основано на зависимости амплитуды колебаний тела в исследуемой жидкости от ее вязкости.
Ультразвуковыми вискозиметрами измеряют скорость затухания колебаний магнитострикционного материала, помещенного в исследуемую жидкость.
Независимо от конструкции вискозиметра, определение вязкости следует проводить в условиях строгого термостатирования.
Вискозиметры
Вязкость измеряется в градусах Энглера (°Е), универсальных секундах Сейболта («SUS) или градусах Редвуда (°RJ) в зависимости от типа применяемого вискозиметра. Три типа вискозиметров отличаются только количеством вытекающей жидкой среды.
Вискозиметр, измеряющий вязкость в европейской единице градус Энглера (°Е), рассчитан на 200 см 3 вытекающий жидкой среды. Вискозиметр, измеряющий вязкость в универсальных секундах Сейболта («SUS или «SSU), используемый в США, содержит 60 см 3 испытываемой жидкости. В Англии, где используются градусы Редвуда (°RJ), вискозиметр проводит измерения вязкости 50 см 3 жидкости. Например, если 200 см 3 определенного масла течет в десять раз медленнее, чем аналогичный объем воды, то вязкость по Энглеру составляет 10°Е.
Поскольку температура является ключевым фактором, изменяющим коэффициент вязкости, то измерения обычно проводятся сначала при постоянной температуре 20°С, а затем при более высоких ее значениях. Результат, таким образом, выражается путем добавления соответствующей температуры, например: 10°Е/50°С или 2,8°Е/90°С. Вязкость жидкости при 20°С выше, чем ее вязкость при более высоких температурах. Гидравлические масла имеют следующую вязкость при соответствующих температурах:
190 сСт при 20°С = 45,4 сСт при 50°С = 11,3 сСт при 100°С.
Вязкость крови
Кровь представляет собой жидкую среду организма (вязкопластическую жидкость), состоящую из плазмы и находящихся в ней клеток (эритроцитов, тромбоцитов, лейкоцитов, белков). Она определяет качество всех процессов, происходящих в тканях и отдельных органах.
Вязкость крови показывает соотношение количества ее кровяных клеток к объему плазмы. Этот показатель крайне важен для полноценной работы организма и прежде всего сердечно-сосудистой системы. Нормальным значением в среднем считается 4–5 мПа•с, отклонения же в ту или иную сторону способны вызвать серьезные патологии. На вязкость крови влияют многие факторы: температура тела, состав (венозная более вязкая, чем артериальная), пол (у мужчин — 4,3–5,3 мПа•с, у женщин — 3,9–4,5 мПа•с), возраст (у новорожденных вязкость выше), внешние воздействия, применение медицинских препаратов.
Для перекачивания крови животных на производстве используется насосные установки разных типов: центробежные, мембранные, шестеренчатые, винтовые, перистальтические.
Физические и теплофизическине свойства водных растворов глицерина
Плотность водного раствора глицерина в зависимости от температуры и концентрации. Таблица.
Плотность смеси глицерина и воды приведена в таблице для концентрации глицерина от 10% до 70% по массе в диапазоне температур от нуля до ста градусов Цельсия.
Температура, °C | Плотность водного раствора глицерина (содержание в процентах по массе) / ρ, г/см3 | ||||||
10% | 20% | 30% | 40% | 50% | 60% | 70% | |
1,025 | 1,052 | 1,079 | 1,107 | 1,135 | 1,163 | 1,192 | |
20 | 1,022 | 1,047 | 1,073 | 1,099 | 1,126 | 1,154 | 1,181 |
40 | 1,016 | 1,039 | 1,064 | 1,089 | 1,115 | 1,142 | 1,169 |
60 | 1,006 | 1,030 | 1,053 | 1,078 | 1,103 | 1,130 | 1,156 |
80 | 0,994 | 1,017 | 1,041 | 1,066 | 1.091 | 1,117 | 1.144 |
100 | 0,982 | 1,004 | 1,027 | 1,052 | 1,077 | 1,104 | 1,302 |
Вязкость водного раствора глицерина приводится в таблице в диапазоне температур смеси от нуля до ста градусов Цельсия и концентрации глицерина от 10% до 70%. Примечательно, что добавление всего лишь 10% (по массе) глицерина в воду позволяет повысить динамическую вязкость раствора на 30%.
Температура, °C | Вязкость абсолютная (динамическая) водного раствора глицерина (содержание в процентах по массе) μ, Па*с | ||||||
10% | 20% | 30% | 40% | 50% | 60% | 70% | |
2,44*10-3 | 3,44*10-3 | 5,14*10-3 | 8,25*10-3 | 14,6*10-3 | 29,9*10-3 | 76,0*10-3 | |
20 | 1,31*10-3 | 1,76*10-3 | 2,5*10-3 | 3,72*10-3 | 6,0*10-3 | 10,8*10-3 | 22,5*10-3 |
40 | 0,826*10-3 | 1,07*10-3 | 1,46*10-3 | 2,07*10-3 | 3,10*10-3 | 5,08*10-3 | 9,4*10-3 |
60 | 0,575*10-3 | 0,731*10-3 | 0,956*10-3 | 1,30*10-3 | 1,86*10-3 | 2,85*10-3 | 4,86*10-3 |
80 | — | — | 0,69*10-3 | 0,918*10-3 | 1,25*10-3 | 1,84*10-3 | 2,9*10-3 |
100 | — | — | — | 0,668*10-3 | 0,91*10-3 | 1,28*10-3 | 1,93*10-3 |
Значения теплопроводности водного раствора глицерина показаны в таблице для диапазона температур от 20 до 80 градусов Цельсия и концентрации глицерина от 10% до 70%. С увеличением концентрации глицерина теплопроводность водного раствора снижается. При содержании 50% глицерина теплопроводность смеси примерно на 29% меньшей, чем у чистой воды.
Температура | Теплопроводность смеси глицерина (содержание в процентах по массе) с водой Вт/(м*°C) | ||||||
10% | 20% | 30% | 40% | 50% | 60% | 70% | |
20 | 0,557 | 0,519 | 0,481 | 0,448 | 0,414 | 0,381 | 0,352 |
40 | 0,586 | 0,540 | 0,502 | 0,460 | 0,423 | 0,385 | 0,356 |
60 | 0,611 | 0,565 | 0,519 | 0,477 | 0,435 | 0,393 | 0,360 |
80 | 0,636 | 0,590 | 0,540 | 0,494 | 0,448 | 0,402 | 0,364 |
Оценочные значения теплоемкости водного раствора глицерина приводятся в таблице для температур от 20 до 80 градусов Цельсия и концентраций глицерина от 10 до 70%. С увеличением концентрации глицерина теплопроводность раствора снижается. При нормальных условиях и содержании 10% глицерина теплоемкость смеси примерно в 2 раза меньше теплоемкости чистой воды.
Температура, °С | Теплоемкость смеси глицерина (содержание в процентах по массе) с водой кДж/(кг*°C) | ||||||
10% | 20% | 30% | 40% | 50% | 60% | 70% | |
20 | 1,998 | 1,907 | 1,816 | 1,725 | 1,634 | 1,542 | 1,452 |
40 | 2,002 | 1,916 | 1,830 | 1,744 | 1,659 | 1,573 | 1,487 |
60 | 2,010 | 1,929 | 1,848 | 1,767 | 1,687 | 1,606 | 1,525 |
80 | 2,024 | 1,948 | 1,871 | 1,795 | 1,718 | 1,642 | 1,608 |
Концентрация глицерина по массе и по объёму в водном растворе
В таблице ниже приведены соотношения концентрации глицерина в водном растворе по массе и по объёму.
Концентрация глицерина в водном растворе по массе | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% |
Концентрация глицерина по объёму в водном растворе | 4,0% | 8,1% | 16,58% | 25,49% | 34,84% | 44,63% | 54,86% | 65,56% |
Температура кипения смеси глицерина с водой (при нормальном атмосферном давлении)
- Вода (без глицерина): 100°C
- Вода (90%) + Глицерин (10%): 100.7°C
- Вода (70%) + Глицерин (30%): 102,9°C
- Вода (50%) + Глицерин (50%): 106,7°C
- Глицерин (80%) + Вода (20%): 121,5°C
- Глицерин (90%) + Вода (10%): 139,8°C
- Глицерин (95%) + Вода (5%): 168 °C
Температура замерзания смеси глицерина с водой (при нормальном атмосферном давлении)
Источник, в основном: Богданов, Бурцев, Иванов, Куприянова «Холодильная Техника, Кондиционирование воздуха. Свойства веществ. » СПб. 1999
- Вода (90%) + Глицерин (10%): -2,2°C
- Вода (70%) + Глицерин (30%): -8,8°C
- Вода (50%) + Глицерин (50%): -21,4°C
- Глицерин (70%) + Вода (30%): -41,5°C
Вязкость сахарного сиропа
Сахаром в быту называется сахароза. Свекловичный и тростниковый сахар (в виде песка и рафинада) — очень важный продукт питания. Сахароза относится к углеводам, питательным веществам, заряжающим организм энергией.
Сахарный сироп (основа многих мучных и кондитерских изделий) обладает определенной вязкостью. Она есть уже у самой воды, в составе данной среды. С повышением концентрации растворов вязкость сиропов увеличивается. При концентрации сахара свыше 80 % начинается процесс кристаллизации сахара.
Выделяют следующие разновидности сиропов.
1. Сахарно-паточный. Помимо растворенного в воде сахара содержит патоку. Имеет более высокую вязкость.
2. Инвертный. Обладает более низкой вязкостью, но повышенной гигроскопичностью.
3. Молочный. Растворителем здесь служит молоко (цельное, сухое, сгущенное, сливки), возможно добавление патоки. Данный сироп выступает основным полуфабрикатом при изготовлении молочных конфет, помадных масс.
Для перекачивания сиропов лучше всего подходят центробежные и кулачковые насосы.
Вязкость меда
Очень вязкой жидкой средой является мед. Его вязкость зависит от зрелости, то есть от содержания в продукте воды. Так, при содержании 25 % воды коэффициент вязкости меда равен 1,051, а при 16,6 % — 9,436 (при температуре 45 °С). Кроме того, этот показатель увеличивается в результате кристаллизации. Вязкость продукта повышают декстрины и коллоиды.
Зрелость меда определить несложно. Нужно зачерпнуть ложкой продукт и быстро поворачивать ее: незрелый мед будет стекать.
Хотя состав меда не особо влияет на его вязкость, некоторые сорта в этом отношении отличаются. В связи с этим выделяется 5 групп продукта:
- очень жидкий (акациевый, клеверный).
- жидкий (гречишный, липовый, рапсовый);
- густой (одуванчиковый);
- клейкий (падевый);
- студнеобразный (вересковый).
В промышленных условиях мед перекачивают кулачковыми и винтовыми насосами.
Вязкость аморфных материалов
Вязкость аморфных материалов (например, стекла или расплавов) — это термически активизируемый процесс:
- η(T)=Aexp(QRT),{\displaystyle \eta (T)=A\exp \left({\frac {Q}{RT}}\right),}
где
- Q{\displaystyle Q} — энергия активации вязкости (Дж/моль);
- T{\displaystyle T} — температура (К);
- R{\displaystyle R} — универсальная газовая постоянная (8,31 Дж/моль·К);
- A{\displaystyle A} — некоторая постоянная.
Вязкое течение в аморфных материалах характеризуется отклонением от закона Аррениуса: энергия активации вязкости Q{\displaystyle Q} изменяется от большой величины QH{\displaystyle Q_{H}} при низких температурах (в стеклообразном состоянии) на малую величину QL{\displaystyle Q_{L}} при высоких температурах (в жидкообразном состоянии). В зависимости от этого изменения аморфные материалы классифицируются либо как сильные, когда (QH−QL)<QL{\displaystyle (Q_{H}-Q_{L})<Q_{L}}, или ломкие, когда (QH−QL)⩾QL{\displaystyle (Q_{H}-Q_{L})\geqslant Q_{L}}. Ломкость аморфных материалов численно характеризуется параметром ломкости Доримуса RD=QHQL{\displaystyle R_{D}={\frac {Q_{H}}{Q_{L}}}}: сильные материалы имеют RD<2{\displaystyle R_{D}<2}, в то время как ломкие материалы имеют RD⩾2{\displaystyle R_{D}\geqslant 2}.
Вязкость аморфных материалов весьма точно аппроксимируется двуэкспоненциальным уравнением
- η(T)=A1T(1+A2expBRT)(1+CexpDRT){\displaystyle \eta (T)=A_{1}T\left(1+A_{2}\exp {\frac {B}{RT}}\right)\left(1+C\exp {\frac {D}{RT}}\right)}
с постоянными A1{\displaystyle A_{1}}, A2{\displaystyle A_{2}}, B{\displaystyle B}, C{\displaystyle C} и D{\displaystyle D}, связанными с термодинамическими параметрами соединительных связей аморфных материалов.
В узких температурных интервалах недалеко от температуры стеклования Tg{\displaystyle T_{g}} это уравнение аппроксимируется формулами типа VTF или сжатыми экспонентами Кольрауша.
Пример вязкости стёкол
Если температура существенно ниже температуры стеклования, T<Tg{\displaystyle T<T_{g}}, двуэкспоненциальное уравнение вязкости сводится к уравнению типа Аррениуса
- η(T)=ALTexp(QHRT){\displaystyle \eta (T)=A_{L}T\exp \left({\frac {Q_{H}}{RT}}\right)}
с высокой энергией активации QH=Hd+Hm{\displaystyle Q_{H}=H_{d}+H_{m}}, где Hd{\displaystyle H_{d}} — энтальпия разрыва соединительных связей, то есть создания конфигуронов, а Hm{\displaystyle H_{m}} — энтальпия их движения. Это связано с тем, что при T<Tg{\displaystyle T<T_{g}} аморфные материалы находятся в стеклообразном состоянии и имеют подавляющее большинство соединительных связей неразрушенными.
При T≫Tg{\displaystyle T\gg T_{g}} двуэкспоненциальное уравнение вязкости также сводится к уравнению типа Аррениуса
- η(T)=AHTexp(QLRT),{\displaystyle \eta (T)=A_{H}T\exp \left({\frac {Q_{L}}{RT}}\right),}
но с низкой энергией активации QL=Hm{\displaystyle Q_{L}=H_{m}}. Это связано с тем, что при T≫Tg{\displaystyle T\gg T_{g}} аморфные материалы находятся в расправленном состоянии и имеют подавляющее большинство соединительных связей разрушенными, что облегчает текучесть материала.
Вязкость клея
Клей — это вещество либо смесь органического или неорганического происхождения, способные соединять различные материалы
Для данного продукта вязкость перед его отверждением выступает важной характеристикой. Многочисленные современные клеевые системы имеют разную степень вязкости, она варьируется от водоподобных жидкостей до смолообразных субстанций.
От вязкости зависит способ нанесения клея. Составы низкой вязкости наносятся с минимальным давлением, однако могут требовать фиксации, чтобы не допустить нежелательного вытекания.
Клеи на основе ПВА относят к псевдопластическим жидкостям: их вязкость меняется от скорости течения, при перемешивании они разжижаются. Данная зависимость отличается у разных составов.
В целом жидкие клеевые материалы классифицируются на 3 группы:
- низковязкие, имеющие показатель вязкости до 3 Па•с (их можно наносить краскопультом);
- средневязкие (5–20 Па•с, предполагают использование кисти, валика);
- высоковязкие (свыше 25–30 Па•с, наносятся шпателем).
На производстве клей перекачивают мембранные и поршневые бочковые насосы.
Сила внутреннего трения в жидкости
(12)
т. е. она прямо пропорциональна
динамическому коэффициенту вязкости,
площади трущихся слоёв
и градиенту скорости.
В системе СИ динамический коэффициент
вязкости имеет размерность
.
В системе СГС за единицу динамического
коэффициента вязкости принимаютпуаз
(Пз). Размерностьпуаза –Следовательно,или
При расчётах наиболее частоприменяюткинематическийкоэффициент вязкости,
.
(13)
Название «кинематический» этот
коэффициент получил в связи с тем, что
в его размерность входят единицы
измерения только кинематических
параметров и не входят единицы силы
В системе СИ кинематический коэффициент
вязкости измеряется в (м2/с), в
системе СГС – см2/с илистокс
(Ст). Величину, в 100 раз меньшуюстокса,называютсантистоксом.
В практике, наряду с упомянутыми единицами
измерения вязкости жидкости, используют
условныйградус Энглера(Е),
определяемый одним из приборов для
измерения вязкости – вискозиметром
Энглера.
Под условным градусом Энглера
понимают отношение времени истечениям3(200 см3) испытуемой жидкости, при
данной температуре из латунного
цилиндрического сосуда с коническим
дном через калиброванное отверстие
диаметром 2,8 мм, к времени истечения
из этого же сосудам3дистиллированной воды при температуре
20С.
По известному значению вязкости в
условных градусах Энглера,
кинематический коэффициент вязкости,,
определяют по формуле
.
(14)
Вязкость жидкостей в значительной
степени зависит от температуры. При
этом вязкость капельных жидкостей с
увеличением температуры уменьшается
(таблица 2), а вязкость газов возрастает.
Это объясняется тем, что природа вязкости
капельных жидкостей и газов различна.
В газах средняя скорость теплового
движения и длина свободного пробега
молекул возрастает с повышением
температуры, что приводит к увеличению
вязкости. В капельных жидкостях молекулы
могут лишь колебаться относительно
среднего положения. Cростом температуры скорости колебательных
движений молекул увеличиваются. Это
облегчает возможность преодоления
удерживающих их связей, и жидкость
становится более подвижной и менее
вязкой.
Таблица 2 —
Коэффициент кинематической вязкости
воды при различных температурах
t, °C |
ν, |
t, °C |
ν, |
t, °C |
ν, |
t, °C |
ν, |
t, °C |
ν, |
t, °C |
ν, |
0,0179 |
6 |
0,0147 |
12 |
0,0124 |
18 |
0,0106 |
30 |
0,0080 |
45 |
0,0060 |
|
2 |
0,0167 |
8 |
0,0139 |
14 |
0,0118 |
20 |
0,0101 |
35 |
0,0072 |
50 |
0,0055 |
4 |
0,0157 |
10 |
0,0131 |
16 |
0,0112 |
25 |
0,0090 |
40 |
0,0065 |
60 |
0,0048 |
Кинематический коэффициент вязкости
капельных жидкостей при давленияхслабо зависит от давления. В таблице 3
приведены значения коэффициента
кинематической вязкости для некоторых
жидкостей.
Таблица 3 – Коэффициент кинематической
вязкости для некоторых жидкостей
Жидкость |
t, °C |
ν, |
Жидкость |
t, °C |
ν, |
Цельное молоко |
20 |
0,00174 |
Безводный глицерин |
20 |
20 |
Патока |
18 |
60 |
|||
Керосин |
15 |
0,027 |
Легкая нефть |
18 |
0,025 |
Мазут |
18 |
2,0 |
Тяжелая нефть |
18 |
0,14 |
Масло АМГ-10 |
50 |
0,01 |
ртуть |
15 |
0,00011 |
Кинематический коэффициент вязкости
газов при увеличении давления уменьшается.
Немного о вязкости смазочных жидкостей
Вязкость определяется сопротивляемостью жидких материалов течению под различными воздействиями, в частности, силы тяжести. Если сравнивать различные жидкости, к примеру, пчелиный мед и воду, можно заметить, что первая течет гораздо хуже. Вязкость можно рассматривать с точки зрения умения жидкого материала сопротивляться сдвигу частей друг относительно друга или смещению слоя жидкости относительно поверхности деталей во время их совместного передвижения.
В механике сплошных сред различаются две величины вязкости: кинематическая и динамическая.
Динамическая (ДВМ) представляет собой отношение усилия, которое прикладывается к жидкому материалу, к степени искажения. Она измеряется в Па∙с или в Пуазах.
Что такое кинематическая вязкость моторного масла? Она определяется отношением динамической величины к плотности среды при одинаковой температуре. Этот показатель можно получить, измерив время вытекания определенного объема через калиброванное отверстие под воздействием силы тяжести. Измерить индекс позволяет устройство, называемое вискозиметром. Если рассматривается кинематическая вязкость масла: в чем измеряется величина? В различных системах для этого используется несколько единиц: м²/с, стокс, градус Энглера.
Рис.1. Единицы измерения кинематической вязкости масла.
Для определения вязкости выпускается несколько видов приборов. Выбор вискозиметра определяется условиями использования. Устройство может применяться в лабораторных условиях, а также для постоянного контроля состояния жидких материалов. Это часто требуется в производственном процессе. Кроме этого, температурные показатели веществ также могут различаться. Сегодня производится оборудование для работы в температурном режиме минус 50…плюс 2000 градусов.
Чтобы определиться с оптимальным вискозиметром, следует учитывать несколько критериев:
- необходимую точность замеров;
- диапазон измерений;
- условия эксплуатации прибора.
Приборы для определения кинематической вязкости масел (КВМ):
- Капиллярные. Этот тип оборудования позволяет определить время, за которое установленный объем жидкого вещества сможет преодолеть капилляр.
- Ротационные. В данном устройстве жидкость, у которой определяется вязкость, размещена между цилиндрами. От одного из них, вращающегося с определенной скоростью, вращательный момент передается через жидкий материал второму, изначально статичному. Показатель вязкости среды оценивается по вращающему моменту второго цилиндрического звена прибора.
- С движущимся шарообразным телом. Показатель вязкости среды оценивается по расстоянию, которое способен пройти шар, помещенный в жидкое вещество.
- Пузырьковые. Устройства этого типа предназначены для оценки перемещения газа в жидком материале.
- Ультразвуковые. Для определения вязкости исследуются импульсы, испускаемые зондом (время их затухания).
- Вибрационные. В этом оборудовании в жидкую среду опускается зонд, который начинает вибрировать. Определение кинематической вязкости масла проводится посредством оценки степени затухания его колебаний.