Крутящий момент двигателя
Содержание:
- Работа и мощность
- Самые мощные серийные автомобили 2016 года.
- Простым языком о крутящем моменте
- Как рассчитывается мощность двигателя?
- Крутящий момент редуктора – что это означает?
- Что такое киловатты (кВт)
- Как увеличить крутящий момент
- Расчетное напряжение
- От чего зависит крутящий момент
- Напряжения при кручении
- Физический смысл величины M¯
- Крутящий момент и лошадиная сила
- Вплоскости xoz действуют силы:
- Как это решается в современных автомобилях, и почему производители всё упрощают
Работа и мощность
Теперь остановимся на таком понятии как «работа», которое в данном контексте имеет особое значение. Работа совершается всякий раз, когда сила — любая сила — вызывает движение. Работа равна силе, умноженной на расстояние. Для линейного движения мощность выражается как работа в определённый момент времени.
Если мы говорим о вращении, мощность выражается как вращающий момент (T), умноженный на частоту вращения (w).
Частота вращения объекта определяется измерением времени, за которое определённая точка вращающегося объекта совершит полный оборот. Обычно эта величина выражается в оборотах в минуту, т.е. мин-1 или об/мин. Например, если объект совершает 10 полных оборотов в минуту, это означает, что его частота вращения: 10 мин-1 или 10 об/мин.
Итак, частота вращения измеряется в оборотах в минуту, т.е. мин-1.
Приведем единицы измерения к общему виду.
Для наглядности возьмём разные электродвигатели, чтобы более подробно проанализировать соотношение между мощностью, вращающим моментом и частотой вращения. Несмотря на то, что вращающий момент и частота вращения электродвигателей сильно различаются, они могут иметь одинаковую мощность.
Например, предположим, что у нас 2-полюсный электродвигатель (с частотой вращения 3000 мин-1) и 4-полюсной электродвигатель (с частотой вращения 1500 мин-1). Мощность обоих электродвигателей 3,0 кВт, но их вращающие моменты отличаются.
Таким образом, вращающий момент 4-полюсного электродвигателя в два раза больше вращающего момента двухполюсного электродвигателя с той же мощностью.
Как образуется вращающий момент и частота вращения?
Теперь, после того, как мы изучили основы вращающего момента и скорости вращения, следует остановиться на том, как они создаются.
В электродвигателях переменного тока вращающий момент и частота вращения создаются в результате взаимодействия между ротором и вращающимся магнитным полем. Магнитное поле вокруг обмоток ротора будет стремиться к магнитному полю статора. В реальных рабочих условиях частота вращения ротора всегда отстаёт от магнитного поля. Таким образом, магнитное поле ротора пересекает магнитное поле статора и отстает от него и создаёт вращающий момент. Разницу в частоте вращения ротора и статора, которая измеряется в %, называют скоростью скольжения.
Скольжение является основным параметром электродвигателя, характеризующий его режим работы и нагрузку. Чем больше нагрузка, с которой должен работать электродвигатель, тем больше скольжение.
Помня о том, что было сказано выше, разберём ещё несколько формул. Вращающий момент индукционного электродвигателя зависит от силы магнитных полей ротора и статора, а также от фазового соотношения между этими полями. Это соотношение показано в следующей формуле:
Сила магнитного поля, в первую очередь, зависит от конструкции статора и материалов, из которых статор изготовлен. Однако напряжение и частота тока также играют важную роль. Отношение вращающих моментов пропорционально квадрату отношения напряжений, т.е. если подаваемое напряжение падает на 2%, вращающий момент, следовательно, уменьшается на 4%.
Самые мощные серийные автомобили 2016 года.
Изучая технические характеристики современных автомобилей большинство из нас чаще всего обращают свое внимание на мощность автомобиля(ей), которая выражается, как все уже знают, в лошадиных силах. Традиционно считается, чем больше л.с
в автомобиле, тем он мощнее. К большому сожалению многие из нас забывают, что не менее важен и другой показатель в автомобиле, это его максимальный крутящий момент. На современном авторынке можно встретить (найти) не мало примеров, когда автомобили (их двигатели) имеют просто фантастическое количество лошадиных сил, а выдают при этом не достаточный для мотора крутящий момент. Уважаемые наши читатели, давайте вместе узнаем, какие серийные автомобили в настоящий момент выпускаются для продажи на мировом авторынке с самым большим крутящим моментом двигателя. Поверьте нам, эти суперкары готовы сегодня запросто разорвать нашу стратосферу, если бы они могли передвигаться (летать) по воздуху.
Все современные технологии в автопромышленности развивавшиеся за последние несколько лет, в буквальном смысле слова изменили весь автомобильный рынок в сфере мощных и супер-мощных супекаров. Ведь еще каких-то 5 лет назад подобный список самых мощных автомобилей выглядел бы совсем по иному. Но в сегодняшнюю эпоху быстрого развития турбированных и гибридных двигателей, все стало выглядеть иначе (по другому).
Благодаря внедрению новейших технологий в автопроизводство на первое место по показателям выдвинулся крутящий момент двигателя, отодвинув на второй план такой немаловажный показатель в машине, как лошадиные силы. Причина заключается в турбокомпрессорах устанавливаемых на моторы, где за счет турбонаддува этих компрессоров увиливается мощность самого двигателя, которая позволяет двигателю свободно использовать его максимальный крутящий момент на малых оборотах. Первое,- так сегодня, главным критерием мощности автомобиля является диапазон оборотов самого двигателя, в котором доступна максимальная мощность. Теперь вы сами понимаете, если эта (большая) мощность автомобиля будет доступна в небольшом диапазоне оборотов силового агрегата, то автомобиль не может считаться одним из самых мощных
Второе,- так же важно, чтобы эта максимальная мощность была доступна на малых оборотах двигателя, то есть, чем раньше автомобиль сможет использовать всю мощь своего двигателя, тем для него лучше.
Давайте вместе рассмотрим автомобили 2016 года выпущенные по всему миру, у которых самый большой крутящий момент двигателя. Сразу хотим заметить, что в недалеком будущем этот список автомобилей безусловно (скорее всего) будет выглядеть иначе, так как все автомобильные компании не стоят на месте и постоянно создают новые и новые автомобили, т.е. новые суперкары. Так что в следующем году этот рейтинг автомобилей с самым большим крутящим моментом двигателя будет в любом случае выглядеть по-другому.
Простым языком о крутящем моменте
Если внимательно изучить основные характеристики двигателя авто, то можно столкнуться со следующими понятиями:
- уровень мощности мотора машины, который измеряется в лошадиных силах;
- крутящий момент мотора машины (измеряется в ньютонометрах);
- число оборотов, которые мотор машины делает в течение одной минуты.
Подавляющее большинство людей, которые видят значение в 100 или же в 200 л.с. считают, что это хорошо. И, по большому счету, это действительно так. 100 л.с. или же лошадиных сил являются очень хорошими показателями для городских кроссоверов, которые отличаются компактными размерами, или же для мощных хэтчбеков.
Однако такие характеристики как крутящий момент, число оборотов, которые мотор делает в течение одной минуты, являются не менее важными характеристиками мотора. Потому как уровень мощности в 200 л.с. может быть достигнут, только когда мотор автотранспортного средства работает на пределе. От крутящего момента и будет зависеть быстрота разгона транспортного средства.
Допустим, что вы едете на своей машине по автомобильной трассе на большой скорости, включив четвертую или же пятую передачу. Если вдруг дорога станет подниматься, то уровень мощности мотора вашего транспортного средства может просто оказаться недостаточно.
По этой причине вам придется переходить на низкие передачи, уровень мощности мотора, соответственно, от этого будет увеличиваться. Крутящий же момент обеспечивает увеличение уровня мощности мотора автотранспортного средства, помогая активизировать все его силы на то, чтобы преодолеть препятствие.
Это будет зависеть главным образом от конкретной марки транспортного средства. Что касается двигателей дизельного типа, то у них максимальный крутящий момент в подавляющем большинстве случаев наблюдается на трех-четырех тысячах оборотов в течение одной минуты.
Соответственно, у них гораздо лучше динамика разгона. Тем не менее, в плане максимального уровня мощности они очень сильного проигрывают двигателям, которые работают на бензине.
Ну и для того, чтобы читателям было совсем понятно, что представляет собой крутящий момент, расскажем о единицах, в которых он измеряется. Это метры и ньютоны. Это та сила, с которой мощность поступает от поршня на маховик через коленвал. И уже от него на трансмиссию (коробку передач). От скорости движения поршня будет непосредственным образом зависеть скорость движения маховика.
Хотя существуют и такие автотранспортные средства, мотор которых вырабатывает тягу даже при низких оборотах. К таким в частности, можно отнести различного рода трактора, самосвалы, а также внедорожники.
От чего зависит крутящий момент мотора автотранспортного средства
Само собой разумеется, что самые мощные моторы транспортных средств обладают достаточно крупными размерами. Соответственно, если ваше транспортное средство – это малолитражка или же компактный хэтчбек, то у вас не получится ни резко разогнаться, ни «стартануть» с места.
Исходя из этого, на малолитражках двигатель используется только лишь на половину своей максимальной мощности. В то время как мощные транспортные средства способны разгоняться практически с места. При этом отсутствует необходимость в быстром переключении передач.
Еще одним важным параметром, который оказывает самое непосредственное влияние на крутящий момент мотора автотранспортного средства, является его эластичность. Этот параметр показывает соотношение числа оборотов, которое делает мотор в течение одной минуты, и уровня мощности.
Даже на низкой передаче авто может ехать с достаточно высокой скоростью при двигателе, работающем на полную мощность. Это является особенно актуальным при езде по городским улицам, потому как там водителям приходится постоянно притормаживать, разгоняться, а потом снова притормаживать.
При езде по автомобильной трассе это тоже очень выгодно, потому как можно разогнать двигатель транспортного средства до необходимого количества оборотов всего одним нажатием на педаль.
Как рассчитывается мощность двигателя?
Расчет мощности мотора проводится несколькими способами. Самый доступный способ – через крутящий момент. Умножаем крутящий момент на угловую скорость – получаем мощность двигателя.
N_дв=M∙ω=2∙π∙M∙n_дв
где:
N_дв – мощность двигателя, кВт;
M – крутящий момент, Нм;
ω – угловая скорость вращения коленчатого вала, рад/сек;
π – математическая постоянная, равная 3,14;
n_дв – частота вращения двигателя, мин-1.
Мощность рассчитывается и через среднее эффективное давление. Камера сгорания имеет определенный объем. Разогретые газы воздействуют на поршень в цилиндре с определенным давлением. Двигатель вращается с некоторой частотой. Произведение объема двигателя, среднего эффективного давления и частоты вращения, поделенное на 120, и даст теоретическую мощность двигателя в кВт.
N_дв=(V_дв∙P_эфф∙n_дв)/120
где:
V_дв – объем двигателя, см3;
P_эфф – эффективное давление в цилиндрах, МПа;
120 – коэффициент, применяемый для расчета мощности четырехтактного двигателя (у двухтактных ДВС этот коэффициент равен 60).
Для расчета лошадиных сил киловатты умножаем на 0,74.
N_(дв л.с.)=N_дв∙0,74
где:
N_дв л.с. – мощность двигателя в лошадиных силах, л. с.
Другие формулы мощности двигателя используются в реальных расчетах реже. Эти формулы включают в себя специфичные переменные. И чтобы измерить мощность двигателя по другим методикам, нужно знать производительность форсунок или массу потребленного двигателем воздуха.
На практике расчет мощности автопроизводители выполняют эмпирическим способом, то есть замеряют на стенде и строят график зависимости по факту, на основании полученных во время испытаний показателей.
Мощность двигателя – величина непостоянная. Для каждого мотора есть кривая, которая отображает на графике зависимость мощности от частоты вращения коленчатого вала. До определенного пика, примерно до 4-5 тысяч оборотов, мощность растет пропорционально оборотам. Далее идет плавное отставание роста мощности, кривая наклоняется. Примерно к 7-8 тысячам оборотов мощность идет на спад. Сказывается перекрытие клапанов на большой частоте вращения коленвала и падение КПД мотора из-за недостаточно интенсивного газообмена.
Чтобы узнать мощность двигателя, обратитесь к инструкции по эксплуатации авто. В разделе с техническими характеристиками мотора будет указана мощность и обороты, при которых она достигает пикового значения. Если мощность указана киловаттах, чтобы рассчитать лошадиные силы двигателя, воспользуйтесь приведенной выше формулой. В некоторых случаях автопроизводитель предоставляет график, на котором есть зависимость мощности двигателя и крутящего момента от частоты оборотов.
Крутящий момент редуктора – что это означает?
Существует общепризнанная единица измерения крутящего момента – Ньютоно – метры. То есть, если к выходному валу редуктора присоединить какую-либо штангу длиной один метр, то привод должен сохранять работоспособность при нагрузке на конце этой штанги равной 1 Ньютону. Нетрудно догадаться, что, чем ближе к оси выходного вала прикладывается нагрузка, тем больший крутящий момент может выдержать редуктор. Для простоты расчётов можно перевести силу Ньютона в усилие, создаваемое килограммом. Усилие 1 килограмма равен 9,81 Ньютона.
Давайте рассмотрим на примере цилиндрического двухступенчатого редуктора РМ-650. Возьмём самое распространённое передаточное число – 31,5, обороты на входном валу – 1500 в минуту, режим работы – 100% нагрузка. Конструктивно в этом редукторе заложен максимально допустимый крутящий момент при указанных условиях равный 5116 Н.м. Что это означает? Это говорит о том, что при радиусе, допустим, барабана в 1 метр, одетого на выходной вал, редуктор РМ-650 будет выдерживать нагрузку в 5116 Ньютонов или поднимать груз в 520 кг. Соответственно, если радиус барабана будет 0,5 метра, то нагрузка допускается 10232 Н.м. или 1040 кг. Нетрудно догадаться, что создаваемый в механизме крутящий момент определяется произведением силы на длину рычага.
Что такое киловатты (кВт)
Ватт является принятой в СИ единицей мощности, названной по фамилии изобретателя Дж. Уатта, создавшего универсальную паровую машину. Ватт в качестве единицы мощности приняли в ходе 2-го конгресса научной ассоциации Великобритании в 1889-м. Ранее для расчёта преимущественно использовали лошадиные силы, которые ввёл Дж. Уатт, реже — фут-фунты/мин. 19-я генеральная конференция мер в 1960-м постановила включить Ватт в СИ.
Один из главных параметров любого электрического прибора — мощность, которую он потребляет. По этой причине на каждом электрическом приборе (либо в прилагаемой к нему инструкции) можно прочитать данные о том количестве Ватт, которое требуется для функционирования прибора.
Различают не только механическую мощность. Известны также тепловая мощность и электрическая. 1 Ватт для потока тепла равноценен 1 Ватту механической мощности. 1 Ватт для электрической мощности равноценен 1 Ватту механической и представляет собой по сути мощность постоянного электротока, имеющего силу 1 А, который совершает работу в условиях напряжения 1 В.
Как увеличить крутящий момент
Увеличение рабочего объема. Чтобы повышать КМ используются разные методы: замена установленного коленвала на вал с увеличенным эксцентриситетом (редко встречающаяся запчасть, которую трудно находить) или расточка цилиндров под больший диаметр поршней. Оба способа имеют свои плюсы и минусы. Первый требует много времени на подбор деталей и снижает долговечность двигателя. Второй, увеличение диаметра цилиндров с помощью расточки, более популярен. Это может сделать практически любой автосервис. Там же можно настроить карбюратор для повышения КМ.
Изменение величины наддува. Турбированные двигатели позволяют достичь более высокого показателя КМ благодаря особенностям конструкции – возможности отключить ограничения в блоке управления компрессором, который отвечает за наддув. Манипуляции с блоком позволят повысить объем давления выше максимума, указанного производителем при сборке автомобиля. Способ можно назвать опасным, поскольку у каждого двигателя есть лимитированный запас нагрузок. Кроме того, часто требуются дополнительные усовершенствования: увеличение камеры сгорания, приведение охлаждения в соответствие повышенной мощности. Иногда требуется отрегулировать впускной клапан, иногда – сменить распредвал. Может потребоваться замена чугунного коленвала на стальной, замена поршней.
Изменение газодинамики. Редко используемый вариант, поскольку двигатель – сложная конструкция, созданием которого занимаются профессионалы. Теоретически можно придумать, как убрать ограничения, заложенные конструкторами для увеличения срока эксплуатации двигателя и его деталей. Но на практике, если убрать ограничитель, результат не гарантирован, поскольку поменяются все характеристики: например, динамика вырастет, но шина не будет цепляться за дорогу. Чтобы усовершенствовать двигатель такие образом надо быть не просто автомобильным конструктором, но и математиком, физиком и т.д.
Расчетное напряжение
Его еще называют номинальным. Оно представляет собой базовое напряжение, представленное стандартным набором вольтажа, которые определяется степенью изоляции электрического оборудования и сети. В действительности оно может отличаться в разных точках оборудования, но не должно превышать предельно допустимых норм рабочих режим, рассчитанных на продолжительное функционирование механизмов.
Для обычных установок под номинальным напряжением понимают расчетные величины, для которых они предусмотрены разработчиком в нормальном режиме работы. Перечень стандартного вольтажа сети предусмотрен в ГОСТ. Эти параметры всегда описаны в технических характеристиках механизмов. Для расчета производительности используют формулу мощности электродвигателя по току:
P = U × I.
От чего зависит крутящий момент
На КМ будут влиять:
- Объем двигателя.
- Давление в цилиндрах.
- Площадь поршней.
- Радиус кривошипа коленвала.
Основная механика образования КМ заключается в том, что чем больше двигатель по объему, тем сильней он будет нагружать поршень. То есть – будет выше значение КМ. Аналогична взаимосвязь с радиусом кривошипа коленвала, но это вторично: в современных двигателях этот радиус сильно изменить нельзя.
Давление в камере сгорания – не менее важный фактор. От него напрямую зависит сила, давящая на поршень.
Для снижения потерь крутящего момента при тряске машины во время резкого газа можно использовать компенсатор. Это специальный (собранный вручную) демпфер, компенсация которого позволит сохранить вращающий момент и повысить срок эксплуатации деталей.
Напряжения при кручении
В поперечных сечениях вала при кручении имеют место только касательные напряжения.
Касательные напряжения, направленные перпендикулярно к радиусам, для произвольной точки, отстоящей на расстоянии ρ от центра, вычисляются по формуле:
где Iρ — полярный момент инерции.Эпюра касательных напряжений при кручении имеет следующий вид:
Касательные напряжения меняются по линейному закону и достигают максимального значения на контуре сечения при ρ= ρmax:
Здесь:
— полярный момент сопротивления.Геометрические характеристики сечений:
а) для полого вала:
б) для вала сплошного сечения (c=0)
в) для тонкостенной трубы (t0,9)
где
— радиус срединной поверхности трубы.
Физический смысл величины M¯
В физике и механике вращения величина M¯ определяет способность силы или суммы сил совершать вращение. Поскольку в математическом определении величины M¯ стоит не только сила, но и радиус-вектор ее приложения, то именно последний во многом определяет отмеченную вращательную способность. Чтобы понятнее было, о какой способности идет речь, приведем несколько примеров:
Каждый человек, хотя бы один раз в жизни пытался открыть дверь, взявшись не за ручку, а толкнув ее недалеко от петель. В последнем случае приходится прилагать значительное усилие, чтобы добиться желаемого результата. Чтобы открутить гайку с болта, используют специальные гаечные ключи. Чем длиннее ключ, тем легче открутить гайку
Чтобы ощутить важность рычага силы, предлагаем читателям проделать следующий эксперимент: взять стул и попытаться удержать его одной рукой на весу, в одном случае руку прислонить к телу, в другом — выполнить задачу на прямой руке. Последнее для многих окажется непосильной задачей, хотя вес стула остался тем же самым
Крутящий момент и лошадиная сила
Автолюбители нередко дискутируют друг с другом: чей двигатель мощнее. Но иногда и не представляют при этом, из чего складывается данный параметр. Общепринятый термин «лошадиная сила» был введён изобретателем Джеймсом Уаттом в XVIII веке. Он придумал его, наблюдая за лошадью, которая была запряжена в поднимающий уголь из шахты механизм. Он рассчитал, что одна лошадь за минуту может поднять 150 кг угля на высоту 30-ти метров. Одна лошадиная сила эквивалентна 735,5 Ватт, или 1 кВт равен 1,36 л.с.
В первую очередь, мощность любого мотора оценивают в лошадиных силах, и лишь потом вспоминают о крутящем моменте. Но эта тяговая характеристика тоже даёт представление о конкретных тягово-динамических возможностях автомобиля. Крутящий момент является показателем работы силового агрегата, а мощность – основным параметром выполнения этой работы. Эти показатели тесно связаны друг с другом. Чем больше производится двигателем лошадиных сил, тем больше и потенциал крутящего момента. Реализуется этот потенциал в реальных условиях через трансмиссию и полуоси машины. Соединение этих элементов вместе и определяет, как именно мощность может переходить в крутящий момент.
Простейший пример – сравнение трактора с гоночной машиной. У гоночного болида лошадиных сил много, но крутящий момент требуется для увеличения скорости через редуктор. Чтобы такая машина двигалась вперёд, надо совсем немного работы, потому что основная часть мощности используется для развития скорости.
Что касается трактора, то у него может быть мотор с таким же рабочим объёмом, который вырабатывает столько же лошадиных сил. Но мощность в этом случае используется не для развития скорости, а для выработки тяги (См. тяговый класс). Для этого она пропускается через многоступенчатую трансмиссию. Поэтому трактор не развивает высоких скоростей, зато он может буксировать большие грузы, пахать и культивировать землю, и т.д.
В двигателях внутреннего сгорания сила передаётся от газов сгорающего топлива поршню, от поршня – передаётся на кривошипный механизм, и далее на коленчатый вал. А коленвал, через трансмиссию и приводы, раскручивает колёса.
Естественно, крутящий момент двигателя не постоянен. Он сильней, когда на плечо действует бо́льшая сила, и слабей – когда сила слабнет или перестаёт действовать. То есть, когда водитель давит на педаль газа, то сила, воздействующая на плечо, повышается, и, соответственно увеличивается крутящий момент двигателя.
Мощность обеспечивает преодоление всевозможных сил, которые мешают двигаться автомобилю. Это и сила трения в двигателе, трансмиссии и в приводах автомобиля, и аэродинамические силы, и силы качения колёс и т.д. Чем больше мощность, тем большее сопротивление сил машина сможет преодолеть и развить большую скорость. Однако мощность – сила не постоянная, а зависящая от оборотов мотора. На холостом ходу мощность одна, а на максимальных оборотах – совершенно другая. Многими автопроизводителями указывается, при каких оборотах достигается максимально возможная мощность автомобиля.
Необходимо учитывать, что максимальная мощность не развивается сразу. Автомобиль стартует с места практически при минимальных оборотах (немного выше холостого хода), и для того, чтобы отмобилизировать полную мощность, требуется время. Тут и вступает в дело крутящий момент двигателя. Именно от него и будет зависеть, за какой отрезок времени автомашина достигнет своей максимальной мощности – то есть, динамика её разгона.
Зачастую водитель сталкивается с такими ситуациями, когда требуется придать автомобилю значительное ускорение для выполнения необходимого маневра. Прижимая педаль акселератора в пол, он чувствует, что автомобиль ускоряется слабо. Для быстрого ускорения нужен мощный крутящий момент. Именно он и характеризует приёмистость автомобиля.
Основную силу в двигателе внутреннего сгорания вырабатывает камера сгорания, в которой воспламеняется топливно-воздушная смесь. Она приводит в действие кривошипно-шатунный механизм, а через него – коленчатый вал. Рычагом является длина кривошипа, то есть, если длина будет больше, то и крутящий момент тоже увеличится.
Однако увеличивать кривошипный рычаг до бесконечности невозможно. Ведь тогда придётся увеличивать рабочий ход поршня, а вместе с ним и размеры двигателя. При этом уменьшатся и обороты двигателя. Двигатели с большим рычагом кривошипного механизма можно применить только лишь в крупномерных плавательных средствах. А в легковых автомашинах с небольшими размерами коленчатого вала не поэкспериментируешь.
Вплоскости xoz действуют силы:
плоскости
YOZ :
Направление
равнодействующих силFХ1,
FY1
и сил FХ2
, FY2
должно учитываться на расчетных схемах
(рис. 1,а
и 1,б).
4.
ОПРЕДЕЛЕНИЕ РЕАКЦИЙ ОПОР В ГОРИЗОНТАЛЬНОЙ
И ВЕРТИКАЛЬНОЙ ПЛОСКОСТЯХ
Определение
реакций опор производится по формулам
теоретической механики с использованием
уравнений равновесия статики.
В
горизонтальной плоскости
XOZ:МАХ = 0;
МBХ= 0;
Производится
проверка правильности определения
реакции:
Аналогично
определяются реакции опор в вертикальной
плоскости:
5.
ОПРЕДЕЛЕНИЕ ИЗГИБАЮЩИХ МОМЕНТОВ МХ
В ГОРИЗОНТАЛЬНОЙ И МY
В ВЕРТИКАЛЬНОЙ ПЛОСКОСТЯХ, СУММАРНОГО,
КРУТЯЩЕГО И ЭКВИВАЛЕНТНОГО МОМЕНТОВ
Определение
величин
МХ
и
МYв
различных сечениях по длине вала
производится по формулам сопротивления
материалов. Необходимо вычислить
величины изгибающих моментов в сечениях
вала, проходящих через середины колес
и опор (рис. 1)
Суммарный
изгибающий момент вi–м
сеченииМi,
Нм:
Эквивалентный
моментМэкв,
Нм
4:
где
Т –вращающий момент, см. формулу (1), Нм;
К
– коэффициент, учитывающий разницу в
характере нагружения вала моментами М
и Т; для реверсивных передач К = 1,
нереверсивных – К = 0,6 1
.
Рис.
1. Составление расчётных схем
6.
ВЫБОР МАТЕРИАЛА ВАЛА, НАЗНАЧЕНИЕ
ТЕРМООБРАБОТКИ,
ОПРЕДЕЛЕНИЕ
ДОПУСКАЕМЫХ НАПРЯЖЕНИЙ ИЗГИБА
Основными
материалами для валов служат углеродистые
и легированные стали (табл. 1). Для
большинства валов применяют термически
обрабатываемые среднеуглеродистые и
легированные стали 20,30,45, 40Х подвергая
их нормализации или улучшению.
Тяжелонагруженные валы машин изготавливают
из легированных сталей 40Х, 40ХН, 20Х,12ХНЗА
и др., подвергнутых улучшению или закалке
ТВЧ.
При
предварительном определении размеров
вала величина допускаемых напряжений
изгиба и,
МПа, может быть приближенно рассчитана
по формуле:
где
-1
– предел выносливости при симметричном
цикле, МПа (табл.1);
SR = 1,6…2
– запас прочности по усталостному
разрушению;
КD = 2,8…3,5
– коэффициент, учитывающий конфигурацию,
размеры и шероховатость поверхности
вала.
Таблица
1
Механические
характеристики сталей, МПа 3
Марка |
Диаметр |
Твердость |
Механические |
Коэффициент |
|||||
|
|
|
|
|
|
|
|||
Ст5 |
Любой |
190 |
520 |
280 |
150 |
220 |
130 |
0,06 |
|
45 |
<120 |
240 |
780 |
540 |
290 |
360 |
200 |
0,1 |
0,09 |
<80 |
270 |
900 |
650 |
390 |
410 |
230 |
0,1 |
0,10 |
|
40Х |
<200 |
240 |
790 |
640 |
380 |
370 |
210 |
0,1 |
0,09 |
<120 |
270 |
900 |
750 |
450 |
410 |
240 |
0,1 |
0,10 |
|
40ХН |
<200 |
270 |
920 |
750 |
450 |
420 |
230 |
0,1 |
0,10 |
20Х |
<120 |
197 |
650 |
400 |
240 |
310 |
170 |
0,05 |
0,07 |
12ХНЗА |
<120 |
260 |
950 |
700 |
490 |
430 |
240 |
0,1 |
0,10 |
18ХГТ |
<60 |
330 |
1150 |
950 |
660 |
500 |
280 |
0,15 |
0,12 |
Как это решается в современных автомобилях, и почему производители всё упрощают
Хороший двигатель сейчас немыслим без турбонаддува. Не вдаваясь в описание этого устройства, можно сказать, что наполнение цилиндров легко обеспечивается почти при любых оборотах, начиная практически с холостых. Отсюда ровная «полка» крутящего момента, который достигает своей максимальной величины при 1500–2000 об/мин и не меняется до максимальных, у подобных двигателей значительно меньших, чем у старых «атмосферников».
Казалось бы, проблема решена, но нельзя же без рекламного эффекта. И производители начинают соревнование — кто большую величину момента укажет в характеристиках новой модели. Зачем это знать водителю — непонятно, всё равно автоматическая коробка передач выберет нужный момент на колёсах, который в несколько раз выше, создаваемого мотором, каким бы он ни был. А разгон автомобиля и прочие его способности определяются исключительно максимальной мощностью. Обороты, при которых она достигается, у гражданских автомобилей примерно одинаковые. То есть надо упоминать равномерность распределения момента по оборотам, чтобы под нагрузкой момент не падал даже без переключений, но нет, указывается только абстрактное число Ньютон-метров.