Классификация и назначение двс
Содержание:
- Управление
- Поршневой ДВС с искровым зажиганием (двигатель Отто)
- Мотор
- Производители электродвигателей
- Способ приготовления смеси
- Конструктивные и эксплуатационные отличия четырехтактных двухтактных бензиновых двигателей
- Работа установки
- Виды ГРМ
- Устройство механизма вращения клапана
- Смесеобразование
- Классификация двигателей по различным основаниям
- Устройства на жидком топливе
- Характеристики
- Второй образец. «Бета»
- Виды двигателей внутреннего сгорания
- Жидкое топливо
Управление
Обычно работой карбюратора управляет водитель автомобиля. На некоторых моделях карбюраторов использовались дополнительные системы, частично автоматизировавшие управление им.
Для управления дроссельной заслонкой на автомобилях обычно используется педаль газа. Она может приводить её в движение при помощи системы тяг или тросового привода. Тяги в целом надёжнее, но конструкция привода получается сложнее и ограничивает возможности конструктора по компоновке подкапотного пространства. Привод тягами широко использовался в прежние годы, но начиная с 1970-х годов получила распространение система с металлическим тросиком. Системы с пневмо- или электромеханическим приводом распространения на карбюраторных двигателях не получили.
На старых автомобилях часто предусматривалась двойная система привода дроссельной заслонки карбюратора: от руки, рычажком или вытяжной рукояткой («постоянный газ»), и от ноги — педалью. Ручное и ножное управления связывалось между собой так, что при нажатии на педаль рукоятка ручного управления остаётся неподвижной, а при её вытягивании педаль опускается. Дальнейшее открытие дросселя можно было производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением. Например, на «Волге» ГАЗ-21 на панели приборов справа от радиоприёмника была расположена рукоятка ручного управления дроссельной заслонкой, дублирующая педаль газа. Вытянув её, можно было добиться устойчивой работы холодного двигателя без использования воздушной заслонки, или использовать для установления «постоянного газа». На грузовых автомобилях режим «постоянного газа» служил в частности для упрощения движения задним ходом.
На мотоциклах и некотором числе автомобилей применяется ручное управление дросселем, осуществляемое специальной рукояткой на руле через тросик.
Воздушная заслонка может иметь механический или автоматический привод. В первом случае её закрывает водитель при помощи рукоятки, размещённой обычно на панели приборов. Автоматический привод широко применялся за границей, а в практике отечественного автопрома распространения практически не получил ввиду низкой надёжности, недолговечности и ненадёжной работы при характерных для климата большей части территории СССР/России больших перепадах температур. В этом случае воздушную заслонку закрывал биметаллический или церезиновый термоэлемент, обогреваемый жидкостью из системы охлаждения. По мере прогрева двигателя, термоэлемент нагревался, расширялся и открывал воздушную заслонку. В иных системах использовался электромеханический привод с датчиком температуры. Из отечественных автомобилей, такое пусковое устройство имели только карбюраторы отдельных моделей ВАЗ.
Очень широко распространён полуавтоматический привод воздушной заслонки. В этом случае она закрывается водителем вручную, а после пуска двигателя автоматически приоткрывается диафрагмой, работающей от возникающего во впускном коллекторе двигателя разрежения. Это предотвращало возможную остановку двигателя из-за переобогащения рабочей смеси и несколько снижало расход топлива на прогрев. Пусковую диафрагму имели практически все отечественные карбюраторы, разработанные после начала 1960-х годов. До этого некоторые модели использовали менее совершенный кулачковый механизм, немного приоткрывавший дроссельную заслонку при закрывании воздушной.
Поршневой ДВС с искровым зажиганием (двигатель Отто)
Является наиболее распространённым по количеству, поскольку число автомобилей в мире на 2014 год составляло более 1,2 млрд., и большая их часть приводится в движение двигателем Отто.
Бензиновый двигатель
Основная статья: Бензиновый двигатель внутреннего сгорания
Является наиболее распространённым вариантом, установлен на значительной части транспортных машин (ввиду меньшей массы, стоимости, хорошей экономичности и малошумности). Имеет два варианта системы подачи топлива: инжектор и карбюратор. В обоих случаях в цилиндре сжимается топливо-воздушная смесь, подверженная детонации, поэтому степень сжатия и уровень форсирования такого двигателя ограничены детонацией.
Карбюраторный двигатель
Основная статья: Карбюраторный двигатель
Особенностью является получение топливо-бензиновой смеси в специальном смесителе, карбюраторе. Ранее такие бензиновые двигатели преобладали; теперь, с развитием микропроцессоров, их область применения стремительно сокращается (применяются на маломощных ДВС, с низкими требованиями к расходу топлива).
Инжекторный двигатель
Особенностью является получение топливной смеси в коллекторе или открытых цилиндрах двигателя путём подачи инжекторной системой подачи топлива. В настоящий момент является преобладающим вариантом ДВС Отто, поскольку позволяет резко упростить электронное управление двигателем. Нужная степень однородности смеси достигается за счет увеличения давления форсуночного распыливания топлива.
Роторно-поршневой
Основная статья: Роторно-поршневой двигатель
Дополнительные сведения: Роторно-цилиндро-клапанный двигатель
Предложен изобретателем Ванкелем в начале XX века. Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя. Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения. За один оборот двигатель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя. Строился серийно фирмой НСУ в Германии (автомобиль RO-80), ВАЗом в СССР (ВАЗ-21018 «Жигули», ВАЗ-416, ВАЗ-426, ВАЗ-526), Маздой в Японии (Mazda RX-7, Mazda RX-8). При своей принципиальной простоте имеет ряд существенных конструктивных сложностей, делающих его широкое внедрение весьма затруднительным. Основные трудности связаны с созданием долговечных работоспособных уплотнений между ротором и камерой и с построением системы смазки, и потому — с выполнением экологических требований.
RCV — двигатель внутреннего сгорания, система газораспределения которого реализована за счёт движения поршня, который совершает возвратно-поступательные движения, попеременно проходя впускной и выпускной патрубок
Обычно роторно-поршневые ДВС используют в качестве топлива бензин, но возможно и применение газа. Роторно-поршневой двигатель является ярким представителем бесшатунных ДВС, наряду с двигателем Баландина.
Газовые двигатели
Основная статья: Газовый двигатель
Двигатель, сжигающий в качестве топлива углеводороды, находящиеся в газообразном состоянии при нормальных условиях:
- смеси сжиженных газов — хранятся в баллоне под давлением насыщенных паров (до 16 атм). Испарённая в испарителе жидкая фаза или паровая фаза смеси ступенчато теряет давление в газовом редукторе до близкого атмосферному, и всасывается двигателем во впускной коллектор через воздушно-газовый смеситель или впрыскивается во впускной коллектор посредством электрических форсунок. Зажигание осуществляется при помощи искры, проскакивающей между электродами свечи.
- сжатые природные газы — хранятся в баллоне под давлением 150—200 атм. Устройство систем питания аналогично системам питания сжиженным газом, отличие — отсутствие испарителя.
- генераторный газ — газ, полученный превращением твёрдого топлива в газообразное. В качестве твёрдого топлива используются: уголь, торф, древесина.
Эти двигатели имеют широкое применение, например, в электростанциях малой и средней мощности, использующих в качестве топлива природный газ (в области высоких мощностей безраздельно господствуют газотурбинные энергоблоки).
Мотор
- Двигатель (внутреннего сгорания или электрический)- так определяет это слово толковый словарь Ожегова.
- Сердце или машина — такое толкование слова предлагает словарь воровского жаргона.
- В словаре Ушакова можно обнаружить еще одно значение слова: экипаж, вагон с двигателем, автомобиль.
Термин «мотор» согласно этимологическому словарю русского языка Макса Фасмера заимствован из немецкого языка. Латинские корни прослеживаются в других европейских языках: немецкий «Моtоr», французский «Moteur», английский «Моtоr».
Наиболее часто слово мотор употребляется в значении электрического двигателя или двигателя внутреннего сгорания: электрический мотор, авиационный мотор, лодочный мотор.
Широко используется при образовании сложных слов: мотопомпа, мотопехота, гидромотор. От слова мотор образованы прилагательные «моторный», «моторизированный».
Производители электродвигателей
Российские производители электродвигателей
Регион | Производитель | Асинхронный двигатель | Синхронный двигатель | УД | КДПТ | |||||
---|---|---|---|---|---|---|---|---|---|---|
СДОВ | СДПМ, серво | СРД, СГД | Шаговый | |||||||
Краснодарский край | Армавирский электротехнический завод | |||||||||
Свердловская область | Баранчинский электромеханический завод | |||||||||
Владимир | Владимирский электромоторный завод | |||||||||
Санкт-Петербург | ВНИТИ ЭМ | |||||||||
Москва | ЗВИМосковский электромеханический завод имени Владимира Ильича | |||||||||
Пермь | ИОЛЛА | |||||||||
Республика Марий Эл | Красногорский завод «Электродвигатель» | |||||||||
Воронеж | МЭЛ | |||||||||
Новочеркасск | Новочеркасский электровозостроительный завод | |||||||||
Санкт-Петербург | НПО «Электрические машины» | |||||||||
Томская область | НПО Сибэлектромотор | |||||||||
Новосибирск | НПО Элсиб | |||||||||
Удмуртская республика | Сарапульский электрогенераторный завод | |||||||||
Киров | Электромашиностроительный завод Лепсе | |||||||||
Санкт-Петербург | Ленинградский электромашиностроительный завод | |||||||||
Псков | Псковский электромашиностроительный завод | |||||||||
Ярославль | Ярославский электромашиностроительный завод |
Аббревиатура:
- АДКР —
- АДФР —
- СДОВ — синхронный двигатель с обмоткой возбуждения
- СДПМ — синхронный двигатель с постоянными магнитами
- СРД — синхронный реактивный двигатель
- СГД — синхронный гистерезисный двигатель
- УД — универсальный двигатель
- КДПТ — коллекторный двигатель постоянного тока
- КДПТ ОВ —
- КДПТ ПМ —
Производители электродвигателей ближнего зарубежья
Страна | Производитель | Асинхронный двигатель | Синхронный двигатель | УД | КДПТ | |||||
---|---|---|---|---|---|---|---|---|---|---|
СДОВ | СДПМ, серво | СРД, СГД | Шаговый | |||||||
Беларусь | Могилевский завод «Электродвигатель» | |||||||||
Беларусь | Полесьеэлектромаш | |||||||||
Украина | Харьковский электротехнический завод «Укрэлектромаш» | |||||||||
Молдова | Электромаш | |||||||||
Украина | Электромашина | |||||||||
Украина | Электромотор | |||||||||
Украина | Электротяжмаш |
Производители электродвигателей дальнего зарубежья
Страна | Производитель | Асинхронный двигатель | Синхронный двигатель | УД | КДПТ | |||||
---|---|---|---|---|---|---|---|---|---|---|
СДОВ | СДПМ, серво | СРД, СГД | Шаговый | |||||||
Швейцария | ABB Limited | |||||||||
США | Allied Motion Technologies Inc. | |||||||||
США | Ametek Inc. | |||||||||
США | Anaheim automation | |||||||||
США | Arc System Inc. | |||||||||
Германия | Baumueller | |||||||||
Словения | Domel | |||||||||
США | Emerson Electric Corporation | |||||||||
США | General Electric | |||||||||
США | Johnson Electric Holdings Limited | |||||||||
Германия | Liebherr | |||||||||
Швейцария | Maxon motor | |||||||||
Япония | Nidec Corporation | |||||||||
Германия | Nord | |||||||||
США | Regal Beloit Corporation | |||||||||
Германия | Rexroth Bosch Group | |||||||||
Германия | Siemens AG | |||||||||
Бразилия | WEG |
ГОСТ 27471-87 Машины электрические вращающиеся. Термины и определения.
И.В.Савельев. Курс общей физики, том I. Механика, колебания и волны, молекулярная физика.-М.:Наука, 1970.
ГОСТ 29322-92 (МЭК 38-83) Стандартные напряжения.
ГОСТ 16264.0-85 Электродвигатели малой мощности
А.И.Вольдек, В.В.Попов. Электрические машины. Машины переменного тока: Учебник для вузов.- СПб.: Питер, 2007.
Paul Waide, Conrad U. Brunner. Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems. International Energy Agency Working Paper, Energy Efficiency Series.: Paris, 2011.
Dr. J. Merwerth. The hybrid-synchronous machine of the new BMW i3 & i8 challenges with electric traction drives for vehicles. BMW Group, Workshop University Lund: Lund, 2014.
Способ приготовления смеси
Классификация двигателей внутреннего сгорания может также осуществляться по тому, каким способом было приготовлено топливо для их работы. К примеру, выделяют два основных вида — это с внешним смесеобразованием и с внутренним смесеобразованием. Под смесеобразованием понимают процесс, в результате которого получают топливо для работы двигателя. Под внешним смесеобразованием понимают процесс приготовления топлива для работы двигателя вне его пределов, то есть в карбюраторе или в смесителе. Естественно, что к этой группе относят те виды этих устройств, которые не способны производить смесь самостоятельно.
Смотреть галерею
К внутреннему смесеобразованию относится тот случай, когда процесс производства смеси происходит непосредственно в самом цилиндре двигателя.
Конструктивные и эксплуатационные отличия четырехтактных двухтактных бензиновых двигателей
Главное отличие четырехтактного двигателя от двухтактного обусловлено разными механизмами газообмена, а именно: удалением отработанных газов и подачей топливно-воздушной смеси в цилиндр.
Процессы заполнения цилиндра и его очистки в четырехтактном двигателе происходят с помощью газораспределительного специального механизма, который в определенное время открывает и закрывает рабочий цикл.
Очистка цилиндра и его заполнение в двухтактном двигателе выполняется в одно время с с расширением и сжатием при нахождении поршня поблизости мертвой нижней точки. В стенках цилиндра для этого имеется два отверстия: продувочное или впускное и выпускное. Через выпускное отверстие поступает топливная смесь, и выходят отработанные газы.
Основные отличия двухтактных и четырехтактных двигателей:
- Литровая мощность. В четырехтактном двигателе на два оборота коленчатого вала приходится один рабочий ход. Поэтому теоретически двухтактный двигатель должен иметь литровую мощность вдвое больше, чем четырехтактный. Но на практике превышение составляет около 1,8 раза, благодаря использованию поршня при расширении хода, а также наличия худшего механизма освобождения цилиндра от отработанных газов и больших затрат на продувку части мощности.
- Потребление топлива. Двухтактный двигатель превосходит четырехтактный в удельной и литровой мощности, но уступает в экономичности. Отработанные газы вытесняются воздушно — топливной смесью, которая поступает в цилиндр из шатунно-кривошипной камеры. Часть топливной смеси при этом поступает в выхлопные каналы и удаляется с отработанными газами.
- У двухтактного и четырехтактного двигателей принцип смазки двигателя существенно отличается. Двухтактные модели характеризуются необходимостью смешивания бензина с моторным маслом в определенных пропорциях. Масляная воздушно-топливная смесь циркулирует в поршневой и кривошипной камерах, смазывая подшипники коленчатого вала и шатуна. Мельчайшие капли масла при возгорании топливной смеси сгорают вместе с бензином. Продукты сгорания уходят вместе с отработанными газами.
Смешивают бензин с маслом двумя способами. Это может быть простое перемешивание, которое проводится перед тем, как залить в бак топливо и раздельная передача. Во втором случае масляно-топливная смесь образуется во впускном патрубке, расположенном между цилиндром и карбюратором.
Двигатель в последнем случае оснащен масляным бачком с трубопроводом, соединенным с плунжерным насосом. Насос подает масло во впускной патрубок в том количестве, которое необходимо. Производительность насоса зависит от того, как расположена ручка подачи «газа». Поступление масла тем больше, чем больше подается топливо. Более совершенной является раздельная система смазки двухтактного двигателя. Отношение бензина к маслу при ней может достигать 200:1. Это приводит к снижению расхода масла и к уменьшению дымности. Такую систему используют, например, на современных скутерах.
В четырехтактных двигателях бензин с маслом не смешивают, а подают отдельно, для чего двигатели имеют классическую систему смазки, которая состоит из фильтра, масляного насоса, трубопроводной магистрали и клапанов. В качестве масляного бачка может выступать картер двигателя (смазка с «мокрым «картером) либо отдельный бачок («сухой» картер).
В первом случае насос всасывает из поддона масло, направляет его во входную полость, а затем по каналам -к деталям шатунно-кривошипной группы, к подшипникам коленвала и газораспределительному механизму.
В случае смазки с «сухим» картером масло заливают в бочок. Оттуда оно при помощи насоса попадает к трущимся поверхностям. Стекающую в картер часть масла откачивают дополнительным насосом и возвращают в бачок.
Для очищения масла от разных продуктов износа двигатель имеет фильтр. Кроме того при необходимости устанавливают охлаждающие фильтра, потому как температура масла в процессе работы может очень сильно подниматься.
Работа установки
Принцип работы двигателя внешнего сгорания заключается в том, что в нем постоянно чередуются два этапа: нагревание и охлаждение рабочего тела в замкнутом пространстве и получение энергии. Данная энергия возникает из-за того, что постоянно изменяется объем рабочего тела.
Чаще всего рабочим веществом в таких устройствах становится воздух, однако возможно использование еще и гелия или водорода. В то время пока изобретение находилось на стадии разработки, в качестве опытов использовались такие вещества, как двуокись азота, фреоны, сжиженный пропан-бутан. В некоторых образцах пытались применять даже обычную воду. Стоит отметить, что двигатель внешнего сгорания, который запускали с водой в качестве рабочего вещества, отличался тем, что у него была достаточно высокая удельная мощность, высокое давление, а сам он был достаточно компактным.
Виды ГРМ
Существуют следующие виды газораспределительных механизмов: нижнеклапанный ГРМ и верхнеклапанный ГРМ. Сегодня, на современных автомобилях, используются только верхнеклапанные ГРМ, когда клапаны располагаются в головке цилиндров.
Клапан удерживается в закрытом состоянии с помощью клапанной пружины, а открывается при нажатии на стержень клапана. Клапанные пружины должны иметь определенную жесткость (оптимальную, чтобы не увеличивать ударную нагрузку на седло клапана) для гарантированного закрытия клапана во время работы.
Чтобы снизить потери на трение в ГРМ применяют ролики, которые установлены на рычагах и толкателях привода клапанов. Применение роликов в клапанном механизме заменяет трение скольжения, на трение качение, что значительно уменьшает потери на привод клапанов.
При открытии впускного клапана проходит топливно-воздушная смесь (или воздух) наполняя цилиндр двигателя. Чем больше площадь проходного сечения, тем полнее заполнится цилиндр, что приводит к повышению выходных показателей цилиндра при рабочем ходе. Для улучшения очистки цилиндров от продуктов сгорания увеличивают диаметр тарелки выпускного клапана. Правда, размеры тарелок клапанов ограничены размером камеры сгорания, выполненной в головке цилиндров. Многое также зависит от регулировки клапанов.
Применение четырех клапанов на цилиндр началось еще в 1912 г. на двигателе автомобиля PeugeotGranPrix. Широкое использование такой схемы в серийном производстве легковых автомобилях началось только в конце 1970-х гг. Сегодня ГРМ с четырьмя клапанами на цилиндр стали практически стандартными для двигателей европейских и японских легковых автомобилей.
Mercedes выпускает двигатели, которые имеют по три клапана на цилиндр, два впускных и один выпускной, с двумя свечами зажигания (по одной с каждой стороны от выпускного клапана).
Устройство механизма вращения клапана
Механизм вращения клапана состоит из: неподвижного корпуса 2 в наклонных канавках которого расположены пять шариков 3 с возвратными пружинами 10, дисковой пружины 9 и опорной шайбы 4 с замочным кольцом 5. Механизм устанавливается в расточке, сделанной в головке цилиндров под опорной шайбой 4 клапанной пружины 6, закрепляемой на стержне 1 с помощью сухариков 8 и тарелки 7. При закрытом клапане давление на дисковую пружину 9 сравнительно невелико, и она выгнута наружным краем вверх, а внутренним краем опирается в заплечик корпуса 2. Шарики 3 отжаты пружинами 10 в исходное положение.
В момент открытия клапана давление клапанной пружины на опорную шайбу 4 возрастает; под действием этого давления дисковая пружина 9, выпрямляясь, передает давление на шарики 3 и вызывает их перемещение в конечное положение. Вместе с шариками перемещаются дисковая пружина с опорной шайбой, клапанная пружина и клапан. Когда клапан закрывается, давление на дисковую пружину 9 уменьшается, и она, выгибаясь, вновь касается своим внутренним краем заплечиков корпуса 2, освобождая тем самым шарики 3. Шарики под действием возвратных пружин перемещаются в исходное положение. Таким образом, при каждом открытии клапана происходит его поворот на некоторый угол. (При номинальном скоростном режиме клапаны совершают 20—40 об/мин.)
Смесеобразование
В теории в РПД применяют несколько разновидностей смесеобразования: внешнее и внутреннее, на основе жидких, твердых, газообразных видов топлива.
Касательно твердых видов топлива стоит отметить, что их первоначально газифицируют в газогенераторах, так как они приводят к повышенному золообразованию в цилиндрах. Поэтому большее распространение на практике получили газообразные и жидкие топлива.
Сам механизм образования смеси в двигателях Ванкеля будет зависеть от вида применяемого топлива.
При использовании газообразного топлива его смешение с воздухом происходит в специальном отсеке на входе в двигатель. Горючая смесь в цилиндры поступает в готовом виде.
Из жидкого топлива смесь приготавливается следующим образом:
- Воздух смешивается с жидким топливом перед поступлением в цилиндры, куда поступает горючая смесь.
- В цилиндры двигателя жидкое топливо и воздух поступают по отдельности, и уже внутри цилиндра происходит их смешивание. Рабочая смесь получается при соприкосновении их с остаточными газами.
Соответственно, топливно-воздушная смесь может готовиться вне цилиндров или внутри их. От этого идет разделение двигателей с внутренним или внешним образованием смеси.
Технические характеристики роторно-поршневого двигателя
параметры | ВАЗ-4132 | ВАЗ-415 |
число секций | 2 | 2 |
Рабочий объем камеры двигателя, куб.см | 1,308 | 1,308 |
степень сжатия | 9,4 | 9,4 |
Номинальная мощность, кВт (л.с.) / мин-1 | 103 (140) / 6000 | 103 (140) / 6000 |
Максимальный крутящий момент, Н * м (кгс * м) / мин-1 | 186 (19) / 4500 | 186 (19) / 4500 |
Минимальная частота вращения эксцентрикового вала на холостом ходу, мин-1 | 1000 | 900 |
Масса двигателя, кг | 136 | 113 |
Габаритные размеры, мм | ||
высота | 560 | 570 |
ширина | 546 | 535 |
длина | 495 | 665 |
Минимальный удельный расход топлива (по ВСХ), г / кВт * ч (г / л.с. * Час) | 312.2 (230) | 312.2 (230) |
Расход масла в% от расхода топлива | 0,7 | 0,6 |
Ресурс двигателя до первого капитального ремонта, тыс. Км | 125 | 125 |
назначение | ВАЗ-21059/21079 | ВАЗ-2108/2109/21099/2115/2110 |
Классификация двигателей по различным основаниям
Различные критерии, дают возможность сгруппировать типы моторов.
1. Применение мотора:
- моторы, относящиеся к стационарному типу, используются на электрических станциях малой и средней мощности, для обеспечения работоспособности насосов, а также распространены в сельскохозяйственных агрегатах;
- как видно из названия транспортные силовые установки, нашли своё применение в различных наземных, воздушных, а также водных транспортах.
2. По виду применяемой топливной смеси:
- лёгкие виды горючего (бензиновые, бензольные, керосиновые, лигроиновые, спиртовые);
- тяжёлые виды горючего;
- газовые силовые установки (генераторные, природные газы);
- смешанные виды горючего; первичное горючее — газ, для старта мотора применяют жидкое горючее;
- использующие разное горючее.
3. По типу преобразования энергии:
- поршневые моторы;
- газотурбинные установки;
- моторы комбинированного типа.
4. По типу образования смеси:
- внешнее образование смеси;
- внутреннее образование смеси.
5. По типу воспламенения топливной смеси:
- моторы с искровым воспламенением;
- установки с воспламенением от давления;
- устройства с форкамерно — факельным воспламенением;
- моторы с газожидкостным воспламенением.
6. В зависимости от конструкции выделяют:
- моторы поршневого типа, они подразделяются на: вертикальные; горизонтальные; V-образные; звездообразные; противолежащими цилиндрами.
- моторы роторно-поршневого типа, делятся на: а. двигатели в которых ротор планетарно движется внутри корпуса. Во время движения, между ротором и корпусными стенками возникают камеры с переменным объёмом, внутри этих камер происходит цикл. Это наиболее распространённая схема; б. моторы в которых вместо ротора планетарно движется корпус, а сам ротор остаётся неподвижным; в. установки, в которых корпус и ротор вращательно движутся — бироторные двигатели.
7. По типу охлаждения выделяют:
- с жидкостной охладительной системой;
- с воздушной охладительной системой.
Устройства на жидком топливе
В классификации двигателей с жидким веществом в качестве топлива, их относят к группе ракетных устройств
Важно отметить, что в качестве рабочей жидкости можно использовать самое разное топливо. Тут необходимо понимать, что выбор смеси для запуска агрегата будет зависеть от характеристик, предназначения, мощности, а также от продолжительности работы самого двигателя
Смотреть галерею
Среди всех требований, которые чаще всего предъявляются именно к этому классу устройств — это наименьший расход рабочей смеси или же, что то же самое, максимальная удельная тяга
Когда возникает необходимость в выборе смеси для работы двигателя на жидком топливе, обращают внимание на такие параметры, как: скорость воспламенения и горения, плотность, испаряемость, ядовитость, вязкость и еще несколько важных характеристик
Смотреть галерею
Характеристики
Работа двигателя определяется его мощностью, действенным давлением, крутящим моментом, скоростью и частотой вращения коленчатого вала и потребление топлива.
Мощность карбюраторного двигателя, а также его крутящий момент подчиняются скорости вращения коленвала и высоты давления.
Скоростная характеристика карбюраторного двигателя устанавливается наивысшей мощностью, которую реально получить от давления при разной частоте вращения коленвала.
При небольшой скорости движения коленчатого вала давление в цилиндрах невысокое и мощность двигателя, соответственно, тоже небольшая. При ускорении вращения коленвала и давление поднимается, так как горючая смесь сгорает быстрее.
Потребление топлива увеличивается при небольшой частоте вращения коленчатого вала, так как процесс сгорания проходит медленнее, теплоотдача большая, а при увеличении частоты вращения механические и тепловые затраты увеличиваются.
Скоростная характеристика дизельного двигателя определяется при недвижимой рейке топливного насоса, который дает высокую подачу топлива на конкретном режиме скорости и бездымной эксплуатации.
При заведенном двигателе автомобиля количество вращений коленвала меняется. Если беспричинно увеличивается потребление топлива, то происходит это благодаря ухудшению рабочего процесса двигателя.
Второй образец. «Бета»
Вторым образцом стала модель «Бета» Стирлинга. Основное конструктивное отличие заключалось в том, что имелся лишь один цилиндр. Один из его концов выполнял роль горячей пары, а другой конец оставался холодным. Внутри данного цилиндра перемещался поршень, с которого можно снимать мощность. Также внутри имелся вытеснитель, который отвечал за изменение объема горячей рабочей зоны. В данном оборудовании использовался газ, который перекачивался из холодной зоны в горячую через регенератор. Этот вид двигателя внешнего сгорания обладал регенератором в виде внешнего теплообменника или же совмещался с поршнем-вытеснителем.
Виды двигателей внутреннего сгорания
Поршневой ДВС
Роторный ДВС
Газотурбинный ДВС
Поршневые двигатели — камерой сгорания служит цилиндр, возвратно-поступательное движение поршня с помощью кривошипно-шатунного механизма преобразуется во вращение вала.
Газовая турбина — преобразование энергии осуществляется ротором с клиновидными лопатками.
Роторно-поршневые двигатели — в них преобразование энергии осуществляется за счёт вращения рабочими газами ротора специального профиля (двигатель Ванкеля).
ДВС классифицируют:
- по назначению — на транспортные, стационарные и специальные.
- по роду применяемого топлива — лёгкие жидкие (бензин, газ), тяжёлые жидкие (дизельное топливо, судовые мазуты).
- по способу образования горючей смеси — внешнее (карбюратор) и внутреннее (в цилиндре ДВС).
- по объёму рабочих полостей и весогабаритным характеристикам — лёгкие, средние, тяжёлые, специальные.
Помимо приведённых выше общих для всех ДВС критериев классификации существуют критерии, по которым классифицируются отдельные типы двигателей. Так, поршневые двигатели можно классифицировать по количеству и расположению цилиндров, коленчатых и распределительных валов, по типу охлаждения, по наличию или отсутствию крейцкопфа, наддува (и по типу наддува), по способу смесеобразования и по типу зажигания, по количеству карбюраторов, по типу газораспределительного механизма, по направлению и частоте вращения коленчатого вала, по отношению диаметра цилиндра к ходу поршня, по степени быстроходности (средней скорости поршня).
Жидкое топливо
Двигатели на жидком топливе относятся к типу ракетных двигателей, то есть используются для запуска ракет. Состоит такое устройство из следующих частей:
Камера сгорания с соплом. Эти элементы служат для того, чтобы преобразовывать химическую энергию топлива в тепловую. После завершения этого процесса начинается следующий, суть которого, заключается в последующем превращении уже имеющейся тепловой энергии, в кинетическую
Тут важно отметить, что камера сгорания, как и сопло, и впрыскивающее устройство, считаются отдельным агрегатом.
Следующими элементами являются клапаны регулировки подачи топлива, а также непосредственно сам двигатель. Предназначение этих клапанов, как ясно из названия, — это регулировка подачи топлива
Это довольно важный процесс, так как характеристика двигателя типа этого зависит от объема подаваемого топлива. В зависимости от количества рабочего вещества, поступающего в двигатель, будет изменяться его тяга.