Поршень

Топливная экономичность искровых ДВС

Основная статья: Октановое число

Сжатие топливо-воздушной смеси в искровых ДВС повышает их эффективность (КПД), но рост степени сжатия также увеличивает вызываемое сжатием нагревание рабочей смеси согласно закону Шарля. Если топливо легковоспламеняемое, вспышка происходит до достижения поршнем ВМТ. Это приводит к такому увеличению давления в процессе сжатия, что повредит двигателю. Поэтому в двигателе с искровым зажиганием (отто-мотор) самовоспламенение топлива недопустимо. Самовоспламенение, требующее значительного времени для предпламенных реакций, иногда возникает при достаточно малом числе оборотов, проявляется обычно как то, что двигатель не глохнет при выключении зажигания, а продолжает неравномерное вращение, иногда в обратную сторону (калильное зажигание от свечей и частиц нагара). Это может приводить к повреждению двигателя, поэтому для его исключения принимаются конструктивные меры.

Область топливного заряда в искровых ДВС отделена от продуктов реакции фронтом пламени, движущимся со порядка 50 м/с (скорость пламени зависит от турбулизации смеси, её состава и типа топлива, энергии пробоя искрового промежутка, неравномерности состава при послойном образовании и других факторов). В условиях нормального горения фронт пламени, в котором и происходит горение, проходит с этой скоростью от свечи до стенок цилиндра. Однако при работе часто наблюдается быстрое самовоспламенение последних порций топливной смеси, происходящее в объёме. Явление это получило название детонации. Причиной детонации является значительное увеличение давления и температуры в оставшейся части заряда (поджатие продуктами горения) из-за , а также диффузия активных веществ из фронта пламени вместе с достаточным временем (десятки миллисекунд), позволяющим пройти предпламенным реакциям. При отсутствии подачи искры детонация при сжатии и расширении не наблюдается (детонация не самовоспламенение).

Когда же детонация наконец возникает, то скорость сгорания достигает величин 2 км/с и более, тем самым в цилиндре образуются многократные отражённые ударные волны, снаружи воспринимаемые как звонкий стук. Ударные волны, принимая в себя часть энергиии топлива, не только снижают мощность, но и наносят повреждения деталям двигателя таким как поршень, кольца и головка цилиндров. В конечном счёте, энергия детонационных волн переходит в тепловую, поэтому при детонации двигатель может перегреваться. Длительная работа с сильной детонацией вызывает выкрашивание материала, поломки поршневых колец, прогар поршня, и потому недопустима; причём поверхность, повреждённая детонацией, лишь усиливает это явление.

В результате этого для каждого двигателя, с учётом его быстроходности, выбранной степени сжатия, угла опережения зажигания, величины подогрева заряда, способа смесеобразования и турбулизации заряда, существует предел работы без детонации на данном виде топлива. Применение топлива с меньшей стойкостью может приводить к описанным выше явлениям в двигателе, что вызывает его отказ. Стойкость топлива к детонационному сгоранию определяют обычно по сравнению с эталонной смесью изооктана и н-гептана. Если бензин имеет октановое число 80, его стойкость соответствует смеси 80% изооктана и 20% н-гептана. Для топлив, имеющих стойкость выше изооктана, число определяют сравнением смешением других смесей. В общем случае, величина измеренного ОЧ зависит от методики. Стойкость топлива к самовоспламенению и детонационная стойкость не равнозначны (нет линейной корреляции). Поэтому организация рабочего процесса в двигателе должна учитывать обе опасности.

В двигателях с воспламенением от сжатия, самовоспламенение топлива носит позитивный характер и оценивается цетановым числом топлива. Большее число показывает более быстрое воспламенение; обычно применяют топлива с ЦЧ более 40. Жёсткость сгорания в дизелях ограничена постепенным сгоранием топлива по мере его подачи, поэтому классической детонации при исправной топливной аппаратуре в таком двигателе не наблюдается.

Ресурс поршня

Две основные проблемы, решаемые в поршневых ДВС: износ и прогар поршня. Износные явления проявляются как увеличение зазора между юбкой и цилиндром, износ верхней поршневой канавки, задир юбки. Наблюдаемое также появление трещин и разрушение перегородок между кольцами имеют обычно те же причины, что и у прогара.

Для устранения первой организуют принудительное (обычно масляное) охлаждение поршня, повышают твёрдость увеличением доли кремния, используют надёжные воздухоочистители для уменьшения абразивного износа, изменяют параметры цикла двигателя для снижения температуры поршня в центре и районе верхнего кольца (напр., увеличивают коэффициент избытка воздуха или увеличивают перекрытие клапанов в наддувных дизелях), применяют вставки под верхнее кольцо, качественные поршневые кольца для хорошего прилегания сразу после обкатки, ускоряют заводскую обкатку применением специальных масел, повышают качество моторных масел для устранения закоксовывания колец и надёжной отдачи тепла от днища, иногда — используют покрытия для поршня или композитные материалы. В японской практике были варианты пластмассовых поршней с покрытием керамикой. Для продления ресурса применяют антифрикционное покрытие направляющей и даже жаровой поверхности поршня. Ускоренный или аварийный износ контрафактных поршней вызывается нарушением размеров и/или качества поковки/отливки, её материала. Погиб шатуна, перекос гильзы или её посадочного гнезда ведёт к быстрому задиру поршня. В двухтактных ДВС причиной заклинивания может быть нехватка масла в топливе.

Прогар поршня может вызываться конструктивными или эксплуатационными причинами. В первом случае превышена расчётная допустимая температура днища, и все двигатели этой модели будут быстро выходить из строя (возможна другая причина — контрафактные поршни: они не могут выдержать нагрузок). Для устранения опасности прогара в этих случаях применяют снижение механических напряжений и температуры поршня (увеличение оребрения, охлаждение, снижение теплоотдачи в поршень изменением параметров цикла). Для снижения температуры сгорания может применяться даже подача воды в цилиндр.

Эксплуатационными причинами прогара могут быть: нарушение угла опережения впрыска/зажигания, отказ (заклинивание) форсунки, детонация (бензиновые), чрезмерная форсировка, общий перегрев из-за отказа термостата, потери тосола, зажатых клапанов, бензина с низким октановым числом, вызывающим детонацию, длительное калильное зажигание. Это приводит к превышению температуры днища и возможному его прогару. При детонационном сгорании, кроме того, может возникать выкрашивание поверхности, ведущее к дальнейшему её развитию, прогару поршня или вылому перегородок между кольцами, поломке колец. Следовательно, необходимо соблюдать инструкцию — применять нужное топливо, правильно выставлять угол опережения зажигания/впрыска, немедленно прекращать работу неисправного дизеля со стучащей форсункой, или перегретого мотора. Высококачественные форсунки и другие дозирующие элементы топливной аппаратуры продлевают ресурс поршней.

Интересные факты[править | править код]

  • Несмотря на то, что поршень делается из булыжника, древесины и железа, его можно быстро сломать и даже добыть рукой.
  • Когда блоки выталкиваются поршнем, они на время становятся нетвёрдыми, и ряд сущностей может провалиться через него. Этот эффект дольше длится в случае с блоком слизи.
  • Если поршень, направленный верх, будет переключаться часто, а над ним будет блок, реагирующий на гравитацию (например, песок или гравий), то этот блок будет добыт и доступен для сбора. Но из гравия никогда не выпадет кремень — его можно получить, лишь вручную добыв блок.
  • Мобы могут спауниться внутри головки поршня.
  • Над «расширением поршня» можно установить ковёр.
  • Изначально вместо липкого поршня планировались выдвигающиеся шипы. Сейчас можно сделать такие «шипы» из шести липких поршней, одного блока магмы, одного блока пола, двух повторителей и четверти стака редстоуна: пока нить не активирована магма не видна, на её месте стоит блок пола (например булыжника), а при задевании нити блок пола за пол секунды заменяется блоком магмы. Если с нити сойти — то блок пола вернется на место. Более подробно читайте и смотрите здесь.

Влияние поршневых ДВС на экологию, и экологических требований на их конструкцию

Сотни миллионов регулярно используемых транспортных (в основном, поршневых) ДВС, потребляя ежедневно огромное количество нефтепродуктов, дают в сумме большие вредные выбросы. Их разделяют на углеводороды (CH), окись углерода (CO), и окислы азота (NOx). Также ранее использовали этилированный бензин, продукты сгорания которого содержали практически не выводимый из организма человека свинец. Наиболее это сказывается в крупных городах, расположенных в низинах и окруженных возвышенностями: при безветрии в них образуется смог.

В первые десятилетия развития автотранспорта этому не уделялось достаточное внимание, поскольку автомобилей было меньше. В дальнейшем производителей обязали соблюдать определённые нормы выбросов, причём они становятся строже

Для уменьшения выбросов в принципе возможны три пути:

  1. Выбор экологически чистого топлива (водород, природный газ) или улучшение традиционного жидкого (бензин и дизтопливо «Евро-5»).
  2. Изменение параметров цикла двигателя или разработка новых (снижение степени сжатия, расслоение заряда, внутрицилиндровый впрыск, системы компьютерного управления с использованием датчиков кислорода, система Common rail на дизелях, и др.).
  3. Снижение содержания вредных выбросов с использованием термических (ранее) и каталитических (настоящее время) катализаторов.

Существующие нормы токсичности в развитых странах требуют обычно применения нескольких способов сразу. При этом обычно ухудшается экономичность как автомобилей, так и всего транспортного (включая нефтеперегонные заводы) комплекса, поскольку оптимумы циклов по экономичности и экологичности у двигателей обычно не совпадают, а изготовление высокоэкологичного топлива требует больше энергии.

Для снижения выбросов во многих случаях приходится уменьшать степень сжатия, максимальную частоту вращения (необходимая мощность в таких случаях достигается меньше влияющим на выбросы турбонаддувом); конструкторам пришлось отказаться от перспективнейшего по экономичности применению бензиновых ДВС, работающих на обеднённой смеси. Тем не менее, несмотря на выполнение норм по вредным выбросам, в настоящее время встал вопрос о дальнейшем применении двигателей на ископаемых топливах в связи с проблемой глобального потепления. С учётом также и ограниченных запасов нефти в ближайшие десятилетия следует ожидать расширения доли двигателей на возобновляемых топливах, а также электродвигателей на перспективных электромобилях. Тем самым, область применения поршневых ДВС начнёт сужаться.

Метод изготовления

В. И. Даль так описывает метод их изготовления: поршни вообще не шьются, а гнутся из одного лоскута сырой кожи или шкуры (с шерстью), на вздёржке, очкуре, ременной оборе; обычно поршни из конины, лучшие из свиной шкуры, есть и тюленьи и прочие: их более. носят летом, налегке, или на покосе, где трава резуча, а рыбаки обувают их и сверх бахил. Зовут поршнями и обувь из опорков сапожных, или берестяники, шелюжники (лапти), даже кенги, плетения из суконных покромок.

По результатам археологических исследований в Новгороде, С. А. Изюмовой было выделено 3 типа поршней: простые, ажурные и составные. Простые шились из прямоугольного куска кожи толщиной 2—2,5 мм, края которого загибались кверху и сшивались. С боков в верхней части делались прорези для кожаного ремешка, с помощью которого поршень и крепился к ноге. Длина этого ремешка достигала 1 метра. Ажурные поршни отличались тем, что на их верхней передней части было несколько рядов прорезей, в которые заплетался ремешок. Составные поршни изготовлялись из более толстой кожи, к основе пришивался ещё треугольный кусок кожи.

Ранние археологические находки поршней в Новгороде датируются концом X — началом XI века. Аналогичная обувь имела хождение и в Европе — в частности, известны находки, датируемые X веком, происходящие из гробницы близ Оберфлахта в Швабии.

Поршни делались не только из дублёной, но нередко — из сыромятной кожи. По Пермской летописи Шишонко известен указ архиепископа Вологодского и Пермского: «Чтобы священникам сырых (сыромятных) коровьих поршней не носити… Они ходят в таких скверных обущах во святилище и бескровную жертву приносят; того ради Бог гневаетца, казнить пожары, и погуби бывают».

Эта обувь использовалась в России вплоть до начала XX века. Энциклопедический словарь Брокгауза и Ефрона сообщает следующее:

Поршни — обувь в виде лаптя, делаемая из одного куска кожи, сшиваемого сыромятным ремнём. К поршням, употребляемым охотниками, пришиваются иногда нетолстая подошва и самые низкие каблуки; такие поршни надеваются, обыкновенно, на длинные шерстяные чулки.

Примечания

  1. . www.cogeneration.com.ua. Дата обращения: 23 февраля 2020.
  2. . techautoport.ru. Дата обращения: 15 января 2020.
  3. . vdvizhke.ru. Дата обращения: 15 июля 2019.
  4. . Дата обращения: 25 июля 2019.
  5. . Studref. Дата обращения: 25 июля 2019.
  6. . docs.cntd.ru. Дата обращения: 30 июля 2019.
  7. . docs.cntd.ru. Дата обращения: 15 января 2020.
  8. . auto-gl.ru. Дата обращения: 15 января 2020.
  9. . wiki.zr.ru. Дата обращения: 11 февраля 2020.
  10. . stroy-technics.ru. Дата обращения: 11 февраля 2020.
  11. ↑ . www.science-education.ru. Дата обращения: 11 февраля 2020.
  12. . www.korabel.ru. Дата обращения: 11 февраля 2020.
  13. . mash-xxl.info. Дата обращения: 11 февраля 2020.
  14. . mash-xxl.info. Дата обращения: 11 февраля 2020.
  15. Хиллиард Д., Спринглер Дж. Топливная экономичность автомобилей с бензиновыми двигателями. — Москва: Машиностроение, 1988. — С. 209—268. — 509 с.
  16. Хиллиард Д., Спринглер Дж. Топливная экономичность автомобилей с бензиновыми двигателями. — Москва: Машиностроение, 1988. — С. 252—268. — 509 с.
  17. . Дата обращения: 25 июля 2019.

Двигатель с воспламенением от сжатия

Основная статья: Дизельный двигатель

Дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. В разогретый в цилиндре воздух от адиабатического сжатия (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. В процессе впрыскивания топливной смеси происходит его распыление, а затем вокруг отдельных капель топливной смеси возникают очаги сгорания, по мере впрыскивания топливная смесь сгорает в виде факела. Так как дизельные двигатели не подвержены детонации, в них допустимо использование более высоких степеней сжатия. Повышение её свыше 15 практически роста КПД не даёт, поскольку при этом максимальное давление ограничивают путём более длительного сгорания и уменьшением угла опережения впрыска. Однако малоразмерные быстроходные вихрекамерные дизеля могут иметь степень сжатия до 26, для надёжного воспламенения в условиях большого теплоотвода и для меньшей жёсткости работы (жёсткость обуславливается задержкой воспламенения, характеризуется в повышении давления при сгорании, измеряется в МПа/градус поворота коленчатого вала). Крупногабаритные судовые дизели с наддувом имеют степень сжатия порядка 11..14 и КПД более 50%.

Дизельные двигатели обычно менее быстроходны и при равной мощности с бензиновыми характеризуются большим крутящим моментом на валу. Также некоторые крупные дизельные двигатели приспособлены для работы на тяжёлых топливах, например, мазутах. Запуск крупных дизельных двигателей осуществляется, как правило, за счёт пневматической схемы с запасом сжатого воздуха, либо, в случае с дизель-генераторными установками, от присоединённого электрического генератора, который при запуске выполняет роль стартера.

Вопреки расхожему мнению, современные двигатели, традиционно называемые дизельными, работают не по циклу Дизеля, а по циклу Тринклера — Сабатэ со смешанным подводом теплоты. Недостатки дизельных двигателей обусловлены особенностями рабочего цикла — более высокой механической напряжённостью, требующей повышенной прочности конструкции и, как следствие, увеличения её габаритов, веса и увеличения стоимости за счёт усложнённой конструкции и использования более дорогих материалов. Также дизельные двигатели за счет характеризуются неизбежными выбросами сажи и повышенным содержанием оксидов азота в выхлопных газах.

Газодизельный двигатель

Основная статья: Газодизельный двигатель

Основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю. Обычно имеется возможность работы по чисто дизельному циклу. Применение: тяжёлые грузовики. Газодизельные двигатели, как и газовые, дают меньше вредных выбросов, к тому же природный газ дешевле. Такой двигатель зачастую получают дооснащением серийного, при этом экономия дизтоплива (степень замещения газом) составляет порядка 60%. Зарубежные фирмы также активно разрабатывают такие конструкции.

Что скажут металурги

Так как деталь работает в невыносимых условиях, то к металлам, для его изготовления, предъявляются достаточно жесткие требования:

  • для уменьшения инерционных нагрузок у материала должен бить малый удельный вес при достаточной прочности;
  • малый коэффициент температурного расширения;
  • сохранение физических свойств (прочность) при повышенных температурах;
  • значительная теплопроводность и теплоёмкость;
  • минимальный коэффициент трения в паре с материалом стенки цилиндра;
  • значительная сопротивляемость износу;
  • отсутствие усталостного разрушения материала под воздействием нагрузок;
  • низкая цена, общедоступность и легкость механической и других видов обработки в процессе производства.

Понятно, что металла, полностью соответствующего перечисленным требованиям, просто не существует.

Поэтому для массовых автомобильных двигателей поршни изготавливаются в основном из двух материалов – чугуна и сплавов алюминия, а если быть точным, то из силуминовых сплавов, содержащих алюминий и кремний.

Чугунный вариант

У чугуна много плюсов, он твёрд, хорошо переносит повышенные температуры, отличается оптимальной сопротивляемостью к износу, имеет низкий коэффициент трения (пара чугун – чугун). И коэффициент температурного расширения у него ниже чем у алюминиевого поршня.

Но есть и недостатки: низкая теплопроводность, из-за чего температура днища у чугунного поршня больше чем у алюминиевого аналога.

Но основной недостаток чугуна ‒ значительная плотность, а значит вес. Для увеличения мощности и эффективности двигателя конструкторы обычно повышают обороты, но тяжелые чугунные поршни не позволяют это делать по причине высоких инерционных нагрузок.

Поэтому для современных автомобильных двигателей, как бензиновых, так и дизельных, отливают алюминиевые поршни.

Алюминиевый вариант

Алюминий имеет значительно меньший вес нежели чугун, но так как он мягче, толщину стенок поршня приходится увеличивать, в результате вес поршня становится легче всего лишь на 30 – 40 процентов по отношению к чугунному.

Коме того у алюминия повышенный температурный коэффициент расширения, поэтому в тело детали приходится вплавлять термостабилизирующие пластины из стали, и делать увеличенные зазоры.

У алюминия довольно малый коэффициент трения (пара: алюминий – чугун), что хорошо для работы алюминиевых поршней в двигателях с чугунным блоком цилиндров или чугунными гильзами.

А чтобы уменьшить трение в паре алюминий – алюминий, проводится железнение поверхности юбки. Таким образом отказ от чугунных гильз намного снижает вес блока цилиндров.

В кремнеалюминиевые сплавы, из которых делают поршни основной массы автомобильных двигателей, для улучшения показателей добавляют медь, никель и другие металлы.

Поршни серийных автомобилей производятся методом литья, а на форсированных двигателях применяют изделия, изготовленные методом горячей штамповки. Это улучшает структуру материала ‒ увеличивается прочность и устойчивость к износу. Правда, в штампованный вариант невозможно вмонтировать стальные терморегулирующие пластины.

Вот пожалуй и всё. Вами получен необходимый минимум знаний, как выглядит поршень, его конструкции и условиях работы.

Осталось поделится этой информацией с друзьями в соц.сетях, пригласить их на рюмочку чая и в домашней, непринужденной обстановке пригласить их пополнить ряды читателей нашего блога.

А еще вам будет интересно знать про Шатун и Коленчатый вал. Дерзайте, жмите на ссылку!

До новых встреч, друзья!

Причины износа поршней двигателя

Трещины на головках поршней и на поршневых кольцах из-за термического износа являются обычной проблемой. Развитие автомобильной промышленности в последние годы привело к тому, что эффективность поршней и поршневых колец в двигателях внутреннего сгорания зависит в первую очередь от долговечности используемых материалов. Условия эксплуатации привода также являются важным фактором. Вероятность отказа двигателя увеличивается с усилением тепловых нагрузок, связанных с ростом производительности (например, за счет увеличения степени сжатия, номинальной мощности, наддува или из-за использования более двух клапанов на цилиндр).

Конструкционные и эксплуатационные факторы влияют на деградацию материала, используемого в поршнях. В зависимости от перечисленных факторов можно указать следующие виды износа:

  • износ из-за трения,
  • износ, вызванный повреждением материала (действие переменных механических и термических нагрузок),
  • процесс коррозии (изменение физико-химических свойств верхнего слоя материала),
  • эрозионный (в результате динамического воздействия газообразной или жидкой среды).

Очень часто трещины вызывают зазубрины, образованные краями углублений клапана. Такие повреждения могут привести, в частности, к нарушениям в процессе горения топливно-газовой смеси или к снижению герметичности камеры.

В двигателях с форкамерным впрыском наиболее распространенным дефектом является растрескивание головки поршня.

Температура на краю поршня в зоне камеры сгорания может быть чуть более 380°C . В случае контакта с жидкостью создаются экстремальные условия, которые могут вызвать трещины или необратимую деформацию поршня. Такое повреждение днища может быть причиной, например, попадания воды или топлива в камеру сгорания.

Еще одна причина повреждения поршня — его тепловая перегрузка. Она может произойти, если масло меняют слишком редко (в автомобилях с двигателем с воспламенением от сжатия его следует менять примерно раз в год; в автомобилях с двигателем с искровым зажиганием — примерно каждые 1,5 года). Это также может привести к засорению форсунок охлаждения моторного масла.

От 40 до 50% механических потерь в двигателе внутреннего сгорания — это потери из-за трения колец и поршня о поверхность подшипника цилиндра. По этой причине размеры поверхности трения колец уменьшаются (при неизменном давлении). Это приводит к снижению эластичности поршневых колец, что может вызвать разрушение из-за тяжелых условий эксплуатации. Растрескивание поршневых колец также может быть следствием:

  • трибологического износа;
  • механических перегрузок, которые возникают из-за нарушения процесса сгорания, ошибок сборки или из-за больших нагрузок при запуске холодного двигателя.

Трибологический износ — это вид износа, возникающий в результате процессов трения. Процессы изнашивания изменяют массу, структуру и физические свойства поверхностных слоев контактных площадок. Интенсивность износа является следствием различных взаимодействий и сопротивления участков трения поверхностных слоев.

Еще одна причина повреждения — захват. Он появляется на юбке поршня и вокруг колец. Частые причины этого явления — частицы от процессов трибологического износа или локального перегрева. Алюминиевый сплав поршня термически расширяется вдвое больше, чем чугун в цилиндре.

Основными параметрами двигателя внутреннего сгорания являются:

  • объем хода — это разность между верхним и нижним возвратным положением поршня в цилиндре;
  • объем камеры сгорания — это объем над головкой поршня, когда он находится в верхнем убираемом положении;
  • общий объем двигателя — это сумма объема цилиндра и объема камеры сгорания;
  • степень сжатия — это общий объем, деленный на объем камеры сгорания.

Поршень является одной из важнейших частей двигателя, в случае возникновения неисправностей необходимо сразу провести диагностику. Промедление может провести к дорогому ремонту или вообще полной замене двигателя.

Материал для изготовления поршневых пальцев

Для изготовления поршневых пальцев применяют в основном сталь  45ХА. После отливки деталь закаливают на 1-1.5 мм глубины. Твердость поверхности должна быть соответствовать определенным нормам. В моторах повышенной мощности применяют для изготовления пальцев применяют более прочные сорта легированной стали.

Установка поршневого пальца

Установка фиксированного поршневого пальца

Для установки фиксированного пальца шатун необходимо нагреть в муфельной электрической печи до температуры 240? С. (При отсутствии муфельной печи шатун часто нагревают на простой электрической плитке). Шатун быстро охлаждается, а палец необходимо в осевом направлении устанавливать очень точно, поэтому делайте это только с применением специального приспособления. Необходимо помнить, что для каждого диаметра поршня существует своё приспособление, хотя все они похожи друг на друга, некоторые размеры приспособлений отличаются, но на глаз это не видно.
Установите палец на приспособление

Принимая все меры предосторожности, извлеките нагретый шатун из муфельной печи шатун и быстро закрепите его в тисках. При помощи специального приспособления вставьте палец в поршень и шатун, строго выполняя указания Руководства по ремонту

Делать всё необходимо быстро, поскольку шатун очень быстро остывает. А после того как шатун остынет, изменить положение пальца не получится. 

  1. Рукоятка приспособления
  2. Центрирующий фланец пальца
  3. Устанавливаемый палец
  4. Направляющая втулка
  5. Колпачковая гайка 

Специальное приспособление для установки поршневого пальца автомобиля ВАЗ.

Установка плавающего поршневого пальца 

Для обеспечения необходимого зазора (натяга) в соединении с пальцем, поршни в зависимости от диаметра отверстия под поршневой палец и пальцы в зависимости от наружного диаметра обычно делятся на несколько размерных групп (классов). Группа поршня и пальца обычно отмечаются цветной меткой на внутренней стороне днища или на бобышке поршня. На поршневом пальце цветовая метка обычно наносится на торцевую поверхность.
Если поршневой палец устанавливается в отверстие поршня с натягом. Сначала проверяется зазор в соединении поршневого пальца и шатуна. При комнатной температуре (20? С) смазанный моторным маслом палец должен входить во втулку верхней головки шатуны под усилием большого пальца.
Проверив цветовые метки на поршне и пальце, нагреваем поршень в ванне с горячей водой, в которой поддерживается температура 60? ? 85? С. Смазанный моторным маслом палец должен легко входить в отверстие поршня. После остывания палец должен быть неподвижным или вращаться с усилием в бобышке поршня, но легко вращаться во втулке верхней головки шатуна.
Некоторые производители рекомендуют снимать и устанавливать поршневой палец при помощи специального приспособления.

Иногда поршневой палец устанавливается с установленным зазором и во втулку верхней головки шатуна и в отверстия бобышек поршня. В этом случае нагревать поршень нет необходимости, и палец легко вращается при комнатной температуре и в верхней головке шатуна и в бобышках поршня.
Всегда применяйте только новые стопорные кольца поршневого пальца и устанавливайте стопорные кольца в строгом соответствии с руководством по ремонту. Направление зазоров стопорных колец, чаще всего, должны быть направлены в сторону нижней части поршня.
Ремонтный комплект, состоящий из поршня, подобранного к поршню поршневого пальца и плоских стопорных колец.

Ремонтный комплект, состоящий из поршней, поршневых пальцев, поршневых колец и круглых стопорных колец.

Плоские стопорные кольца поршневого пальца

Плавающий поршневой палец с комплектом круглых стопорных колец

В любом случае перед установкой поршневого пальца внимательно ознакомьтесь с руководством по ремонту ремонтируемого автомобиля.
Смазка поршневого пальца
Работающий под большой механической и термической нагрузкой поршневой палец должен получать необходимую смазку. Плавающий поршневой палец в соединении с поршневой головкой шатуна смазывается через отверстие в головке шатуна и бронзовой втулке. Масло в это отверстие поступает из внутренней полости поршня, куда оно вбрызгивается масляной форсункой или поступает через отверстия в поршне от маслосъёмных колец.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector