Топливная система дизельного двигателя
Содержание:
Особенности работы топливных насосов
Отличительные свойства систем подачи энергоносителя зависят от конструктивной сборки. В узле привода ставятся роторные и шестеренчатые насосы. Центробежные устройства, характерные для иномарок, следует искать в бензобаке. В классификации часто используется разделение на выносные механизмы, которые монтируются непосредственно на кузовную часть авто. Погружные конструкции используются внутри баков. При таком устройстве топливного насоса обеспечиваются охлаждение подвижных частей, упреждаются случаи работы на холостом ходу. Дополнительно в конструкцию нагнетателя включаются датчики, отвечающие за контроль уровня бензина и давления в системе снабжения.
В отличие от механических, электрические модели, получают сигнал к действию не от распределительного вала, а от блока управления двигателя. За включение отвечает специальное реле, которое работает синхронно с системой зажигания. Давление в системе впрыска может достигать 0.4 МПа для бензиновых и 0.7 МПа для дизельных моторов.
История
Появление и применение систем впрыска в авиации
Карбюраторные системы для работы под углом к горизонту необходимо дополнять множеством устройств, либо применять специально спроектированные карбюраторы. Система непосредственного впрыска авиационных двигателей — удобная альтернатива карбюраторной, так как инжекционная система впрыска в силу конструкции работает в любом положении относительно направления силы тяжести.
Первый в России опытный мотор с системой впрыска был изготовлен в 1916 году Микулиным и Стечкиным.
К 1936 году на фирме Robert Bosch были готовы первые комплекты топливной аппаратуры для непосредственного впрыска бензина в цилиндры, которую через год стали серийно ставить на V-образный 12-цилиндровый двигатель Daimler-Benz DB 601. Именно этими моторами объёмом 33,9 л оснащались, в частности, основные истребители Люфтваффе Messerschmitt Bf 109. И если карбюраторный двигатель DB 600 развивал на взлетном режиме 900 л. с., то DB 601 с впрыском позволял поднять мощность до 1100 л. c. и более. Позже в серию пошла девятицилиндровая «звезда» BMW 132 с подобной системой питания — лицензионный авиадвигатель Pratt & Whitney Hornet, который на BMW производили с 1928 года. Он же устанавливался, к примеру, на транспортные самолеты Junkers Ju 52. Авиационные двигатели в Англии, США и СССР в те времена были исключительно карбюраторными. Японская же система впрыска на истребителях «Mitsubishi A6M Zero» требовала промывки после каждого полета и поэтому не пользовалась популярностью в войсках.
Лишь к 1940 году, когда Советскому Союзу удалось закупить образцы новейших германских авиационных двигателей с впрыском, работы по созданию отечественных систем непосредственного впрыска получили новый импульс. Однако серийное производство советских насосов высокого давления и форсунок, созданных на основе немецких, началось лишь к середине 1942 года — первенцем стал звездообразный мотор АШ-82ФН, который ставили на истребители Ла-5, Ла-7 и бомбардировщики Ту-2. Мотор со впрыском — АШ-82ФН оказался настолько удачным, что выпускался ещё долгие десятилетия, использовался на вертолете Ми-4 и самолетах Ил-14.
К концу войны довели до серии свой вариант впрыска и в США. Например, двигатели «летающей крепости» Boeing B-29 тоже питались бензином через форсунки.
Начало реактивной эры привело к прекращению работ по системам впрыска. На тяжелых и скоростных самолетах применялись турбовинтовые и реактивные двигатели, а поршневые ставились лишь на тихоходные легкие маломаневренные самолеты и вертолеты, которые могли нормально работать и с карбюраторной системой питания.
Применение систем впрыска в автомобилестроении
Системы управления двигателем в автомобилестроении начали применяться с 1951 года, когда механической системой непосредственного впрыска бензина производства западногерманской фирмы Bosch был оснащён двухтактный двигатель микролитражного купе 700 Sport, выпущенного фирмой Goliath из Бремена. В 1954 году появилось купе Mercedes-Benz 300 SL («крыло чайки»), двигатель которого оснащался аналогичной механической системой впрыска Bosch. На рубеже 1950—1960-х годов над электронными системами впрыска топлива активно работали Chrysler и ГАЗ. Тем не менее, до эпохи появления дешёвых микропроцессоров и введения жёстких требований к уровню вредных выбросов автомобилей идея впрыска популярностью не пользовалась и только с конца 1970-х их массовым внедрением занялись все ведущие мировые автопроизводители.
Первой серийной моделью с электронным управлением системы впрыска бензина стал седан Rambler Rebel 1967 модельного года, который выпускала фирма Nash, входившая в качестве отделения в состав концерна AMC. Нижневальная V-образная «восьмерка» Rebel объёмом 5,4 л в карбюраторном варианте развивала 255 л. с., а в заказной версии Electrojector уже 290 л. с. Разгон до 100 км/ч у такого седана занимал менее 8 с.
К началу 2000-х годов системы распределённого и прямого электронного впрыска практически вытеснили карбюраторы на легковых и легких коммерческих автомобилях.
Прямой впрыск топлива – хорошо или плохо?
Двигатели с непосредственным впрыском (также используется термин «прямой впрыск», или GDI) начали появляться на автомобилях не так давно. Однако технология набирает популярность и все чаще встречается на моторах новых автомобилей. Сегодня мы в общих чертах постараемся ответить, что такое технология непосредственного впрыска и стоит ли ее опасаться?
Для начала стоит отметить, что главной отличительной особенностью технологии является расположение форсунок, которые размещены непосредственно в головке блока цилиндров, соответственно, и впрыск под огромным давлением происходит напрямую в цилиндры, в отличие от давно зарекомендовавшей себя с лучшей стороны системы впрыска горючего во впускной коллектор.
Прямой впрыск впервые был испытан в серийном производстве японским автопроизводителем Mitsubishi. Эксплуатация показала, что среди плюсов главными преимуществами стали экономичность – от 10% до 20%, мощность – плюс 5% и экологичность. Основной минус – форсунки крайне требовательны к качеству топлива.
Стоит также отметить, что схожая система уже долгие десятилетия успешно устанавливается на дизельные двигатели. Однако именно на бензиновых моторах применение технологии было сопряжено с рядом трудностей, которые до сих пор не были окончательно решены.
В видео с YouTube-канала «Savagegeese» объясняется, что такое прямой впрыск и что может пойти не так в ходе эксплуатации автомобиля с данной системой. В дополнение к главным плюсам и минусам в видеоролике также объясняются тонкости профилактического обслуживания системы. Кроме того, в ролике затрагивается тема систем впрыска во впускные каналы, которые можно в изобилии наблюдать на более старых моторах, а также моторы, которые используют оба метода впрыска горючего. Наглядно используя диаграммы Bosch, ведущий объясняет, как все это работает.
Чтоб узнать все нюансы, предлагаем посмотреть видео ниже (включение перевода субтитров поможет разобраться, если вы не очень хорошо знаете английский). Для тех, кому не слишком интересно смотреть, об основных плюсах и минусах непосредственного впрыска бензина можно прочитать ниже, после видео:
Итак, экологичность и экономичность – благие цели, но вот чем чревато использование современной технологии в вашем автомобиле:
Минусы
1. Очень сложная конструкция.
2. Отсюда вытекает вторая важная проблема. Поскольку молодая бензиновая технология подразумевает внесение серьезных изменений в конструкцию головок цилиндров двигателя, конструкцию самих форсунок и попутное изменение иных деталей мотора, к примеру ТНВД (топливный насос высокого давления), стоимость автомобилей с непосредственным впрыском топлива выше.
3. Производство самих частей системы питания также должно быть крайне точным. Форсунки развивают давление от 50 до 200 атмосфер.
Прибавьте к этому работу форсунки в непосредственной близости со сгораемым топливом и давлением внутри цилиндра и получите необходимость производства очень высокопрочных компонентов.
4. Поскольку сопла форсунок смотрят в камеру сгорания, все продукты сгорания бензина также осаждаются на них, постепенно забивая или выводя форсунку из строя. Это, пожалуй, самый серьезный минус использования конструкции GDI в российских реалиях.
5. Помимо этого необходимо очень тщательно следить за состоянием двигателя. Если в цилиндрах начинает происходить угар масла, продукты его термического распада достаточно быстро выведут из строя форсунку, засорят впускные клапаны, образовав на них несмываемый налет из отложений. Не стоит забывать, что классический впрыск с форсунками, расположенными во впускном коллекторе, хорошо очищает впускные клапаны, омывая их под давлением топливом.
6. Дорогой ремонт и необходимость профилактического обслуживания, которое тоже недешевое.
Помимо этого, в видео также объясняется, что при ненадлежащей эксплуатации на автомобилях с прямым впрыском могут наблюдаться загрязнение клапанов и ухудшение производительности, в особенности на турбированных двигателях.
Плюсы
1. Экологичность.
2. Экономичность (правда, здесь нужно сделать оговорку: реальная экономия бензина доступна в условиях, близких к идеальным) – экономия 5-10%.
3. Немного более высокая мощность.
4. GDI при непосредственном попадании топлива в цилиндр охлаждает головку поршня.
5. Происходит лучшее смешение топливовоздушной смеси в цилиндрах.
6. Меньше детонация.
7. Требуется гораздо меньше топлива, смесь при определенных условиях работы мотора может обедняться до 30:1
8. Процесс работы двигателя точнее контролируется при помощи компьютера.
Устройство системы питания дизеля
Из чего состоит топливная дизельная система:
- Топливный бак.
- Фильтр грубой очистки топлива (ГОТ).
- Фильтр тонкой очистки топлива (ТОТ).
- Насос для подкачивания дизтоплива.
- Топливный насос высокого давления (ТНВД).
- Инжекторные форсунки.
- Магистраль высокого давления.
- Трубопровод низкого давления.
- Фильтр очистки воздуха.
Эти элементы есть во всех модификациях дизельных агрегатов. Некоторые моторы оснащаются доп элементами: электрический насос, фильтры сажевые, глушители и т.д.
Система питания дизельного двигателя состоит из двух основных частей:
- дизельное устройство для подачи топлива;
- дизельное устройство для подачи воздуха.
Устройство для подачи топлива может быть в едином корпусе, а может быть раздельным. Современное устройство выполнено в раздельном типе, то есть насос ТНВД и форсунки расположены в разных корпусах. Солярка нагнетается по магистралям низкого, затем высокого давления. Все, что до ТНВД, это трубопроводы низкого давления. После ТНВД начинается сжатие топлива.
Система питания дизельного ДВС оснащается двумя насосами:
- насос высокого давления;
- насос для подкачки топлива.
Насос для подкачки начинает качать топливо из бака, прогоняет его через фильтры грубой и тонкой очистки и поставляет его в топливный насос высокого давления.
Насос ТНВД подает топливо под давлением в инжекторные форсунки в порядке, характерном для данного дизельного мотора. В устройстве ТНВД есть много одинаковых секций.
Нераздельная система подачи топлива
Такие двигатели с нераздельной подачей топлива не распространились массово. Они часто ломаются. Хотя конструкция и проще, отсутствует магистраль высокого давления. Моторы работают с высоким уровнем шума.
Раздельная система подачи топлива
В таких двигателях форсунки устанавливают в головке блока цилиндров. Форсунки должны качественно распылять топливо по рабочим камерам сгорания цилиндров, поэтому частой проблемой плохой работы дизеля является засорение форсунок.
Насос подкачки топлива нагнетает много жидкости в ТНВД, насос высокого давления берет нужный ему объем, а остальное оттекает по дренажным линиям обратно в топливный бак.
Классификация дизельных форсунок по конструкции:
- закрытая форсунка, то есть сопло у нее закрывается специальное запорной иглой;
- открытая форсунка.
В четырех тактных двигателях устанавливаются форсунки закрытого вида. Внутреннее пространство форсунки сообщается с камерой сгорания только во время подачи топлива.
Главный элемент форсунок — это распылитель. Распылитель может иметь только одно отверстие или несколько. Впрыск топлива через эти отверстия создают факел в цилиндре. От пропускной способности, количества отверстий зависит форма и расположение факела.
Управление работой дизельного двигателя
Конструктивные требования к работе дизельного двигателя
Вырабатываемая дизельным двигателем мощность Р определяется крутящим моментом на коленчатом вале, передаваемым сцеплению, и частотой вращения коленчатого вала. Крутящий момент на коленчатом вале равняется крутящему моменту, создаваемому в процессе сгорания топлива, за вычетом механических потерь на трение, газообмен и привод вспомогательных агрегатов. Крутящий момент создается в процессе силового цикла, и при наличии достаточного количества воздуха определятся следующими переменными: массой подаваемого топлива, моментом начала сгорания топлива, определяемым началом впрыска, и процессами впрыска и сгорания топлива.
Кроме того, максимальный, зависящий от частоты вращения коленчатого вала крутящий момент ограничен требованиями к ограничению дымности выхлопа, давлением в цилиндрах, тепловой нагрузкой различных компонентов и величиной механической нагрузки всей кинематической цепи привода.
Основная функция системы управления дизельным двигателем
Основной функцией системы управления двигателем является регулирование создаваемого двигателем крутящего момента или, при некоторых условиях, регулирование частоты вращения коленчатого вала в пределах допустимого диапазона (например, оборотов холостого хода).
В дизельном двигателе очистка отработавших газов и подавление шума осуществляются в значительной степени внутри самого двигателя, т.е. путем управления процессом сгорания топлива. Это, в свою очередь, осуществляется системой управления двигателем посредством управления следующими переменными:
- Заряд смеси в цилиндре;
- Объем заряда смеси, подаваемого во время такта впуска;
- Состав заряда смеси (рециркуляция отработавших газов);
- Движение заряда (завихрения на впуске);
- Момент начала впрыска;
- Давление впрыска;
- Распределение впрыска топлива (например, предварительный впрыск, разделенный впрыск топлива и т.д.).
До начала 1980-х годов управление впрыском топлива и зажиганием осуществлялось исключительно при помощи механических устройств. Например, в топливном насосе высокого давления количество подаваемого топлива регулируется в зависимости от нагрузки двигателя и частоты вращения коленчатого вала путем поворота плунжера насоса, имеющего спиральную канавку. В случае механического регулирования начало впрыска/подачи топлива регулируется при помощи центробежного регулятора (зависимого от скорости вращения). Также применялись гидравлические системы регулирования, в которых количество топлива менялось посредством регулирования давления в зависимости от нагрузки и частоты вращения коленчатого вала.
Точность регулирования
В настоящее время, в связи со строгими требованиями законодательства в отношении ограничения токсичности выбросов, требуется очень точное регулирование количества впрыскиваемого топлива и момента начала впрыска в зависимости от таких переменных, как температура, частота вращения коленчатого вала, нагрузка и высота над уровнем моря. Это может быть обеспечено только при помощи электронных систем управления. Сегодня электронные системы управления полностью вытеснили механические. Это единственный метод управления, позволяющий осуществлять непрерывный мониторинг функций системы впрыска топлива, влияющих на содержание вредных веществ в выбросах автомобиля. В некоторых случаях законодательство требует также наличия системы бортовой диагностики.
Регулирование количества впрыскиваемого топлива и момента начала впрыска осуществляется системами EDC (электронная система управления дизельным двигателем) при помощи электромагнитных клапанов высокого или низкого давления, или иных исполнительных устройств. Регулирование подачи топлива, т.е. количества топлива на один градус поворота коленчатого вала, может осуществляться косвенным образом, например, при помощи сервоклапана и регулирования величины подъема игольчатого клапана.
Электронный тюнинг двигателя
Современные дизельные двигатели все чаще оснащаются электроникой. Датчики, которые следят за нагрузкой, контролируют количество подаваемого топлива и состав топливного заряда, подают сигналы на центральный блок управления, который подбирает наиболее эффективный и экономичный режим работы. При аккуратном влиянии на эту систему с помощью дополнительного оборудования можно повышать мощность мотора в определенных пределах – это называется чип-тюнинг. Сразу нужно отметить, что чип-тюнинг не всесилен, он может улучшить работу двигателя в пределах заложенного запаса прочности и частенько приводит к преждевременному износу систем.
Для повышения мощности дизельного двигателя могут использоваться специальные модули или блоки:
— блок, изменяющий импульсы управления форсунками;
— блок замещения режимов топливного насоса высокого давления (ТНВД);
— блок, изменяющий показания датчика давления топливного аккумулятора;
— модуль оптимизации режимов.
Первый вариант – наиболее известный среди любителей автотюнинга. Принцип работы такого блока заключается в том, что он блокирует кратковременные импульсы предварительного и последующего открытия иглы форсунки, что снижает расход топлива. Блок можно установить практически на любой модели, но его работа снижает ресурс мотора и сказывается на качестве сгорания топливного заряда.
Второй вариант можно использовать только на определенных моделях двигателей. Принцип действия этого блока заключается в том, что он подает сигнал с заниженными показателями давления в системе, что приводить к его повышению. В этом случае «страдает» ТНВД и форсунки, но мощность двигателя действительно увеличивается, а расход топлива уменьшается.
Третий вариант предусматривает подключение блока, который подает на ЭБУ сигнал о допустимо пониженном значении давления в топливном аккумуляторе. В результате давление автоматически повышается и по-новому определяется время и интенсивность впрыска топлива. При этом повышается мощность и экономится топливо, но снижается ресурс ТНВД и сажевого фильтра, на стенках цилиндра образуется нагар, двигатель начинает «дымиться».
Наиболее безопасным и эффективным является четвертый вариант. Модуль, подключаемый к системе питания, не подменяет нужными цифрами истинные значения рабочих параметров, а посылает сигнал на ЭБУ о необходимости изменения длительности впрыскивания топлива. В отличие от предыдущих блоков, данный модуль не приносит никакого вреда ни двигателю, ни ТНВД, так что ресурс систем и механизмов не уменьшится. Недостатком данного способа повышения мощности является его высокая стоимость, ограниченность в применении и сложность конструкции. Он не дает моментального эффекта – его действие можно почувствовать только через некоторое время.
Есть и другие способы, в том числе и использование оборудования, которое меняет истинное значение стехиометрических величин, но их применение может привести к серьезным проблемам с двигателем.
Одной из серьезных проблем, возникающих у дизельных двигателей — это так называемый «разнос двигателя». Это нештатный режим работы дизельного двигателя, при котором происходит неуправляемое повышение частоты вращения вала двигателя. Такой режим обычно наблюдается после запуска или при резком сбросе нагрузки. Основных причин разноса две: неисправность топливного насоса высокого давления и попадание большого количества моторного масла в камеру сгорания.
Достоинства
Преимущества по сравнению с двигателями, оборудованными карбюраторной системой подачи топлива (в контексте двигателей имеющих электронный блок управления):
- Существенное уменьшение расхода топлива даже на ранних системах (например у автомобиля «Нива» ВАЗ-21214, оснащенного инжекторной системой первых поколений, расход топлива в среднем на 30-40% меньше чем аналогичного автомобиля ВАЗ-21213 оснащенного карбюратором). Современные системы обеспечивают расход топлива примерно в 2 раза ниже чем у последних поколений карбюраторных автомобилей аналогичной массы и рабочего объема.
- Значительный прирост мощности двигателя, особенно в области низких оборотов.
- Упрощается и полностью автоматизируется запуск двигателя.
- Автоматическое поддержание требуемых оборотов холостого хода.
- Более широкие возможности управления двигателем (улучшаются динамические и мощностные характеристики двигателя).
- Не требует ручной регулировки системы впрыска, так как выполняет самостоятельную настройку на основе данных, передаваемых датчиками кислорода, а также на основе измерения неравномерности вращения коленвала.
- Поддерживает примерно стехиометрический состав рабочей смеси, что существенно уменьшает выброс несгоревших углеводородов и дает возможность использования окислительно-восстановительных каталитических нейтрализаторов. В результате выбросы токсичных продуктов сгорания снизились во много раз. Например, выбросы окиси углерода у последних поколений карбюраторных автомобилей составляли примерно 20-30 г/кВт*ч, у инжекторых автомобилей Евро-2 — уже 4 г/кВт*ч, а у автомобилей, выпущенных по нормам Евро-5 — всего 1,5 г/кВТ*ч.
- Широкие возможности для самодиагностики и самонастройки параметров, что упрощает процесс технического обслуживания автомобиля. Фактически инжекторные системы начиная с Евро-3 вообще не требуют никакого периодического обслуживания (требуется только замена вышедших из строя элементов).
- Лучшая защита автомобиля от угона. Не получив разрешение от иммобилайзера блок управления двигателем не производит подачу топлива в двигатель.
- Возможность уменьшения высоты капота, так как элементы системы впрыска расположены по бокам двигателя, а не над двигателем, как большинство автомобильных карбюраторов.
- В карбюраторных системах при неработающем двигателе или при работе на небольших оборотах за счет испарения бензина из карбюратора весь тракт начиная от воздушного фильтра и до впускного клапана наполнены горючей смесью, объем которой в многоцилиндровых двигателях достаточно велик. При неисправностях в работе системы зажигания или неправильно отрегулированных зазорах в клапанах возможен выброс пламени во впускной коллектор и воспламенения в нем горючей смеси, что вызывает громкие хлопки и может привести к пожару или повреждению приборов системы питания. В инжекторных системах бензин подается только в момент открытия впускного клапана соответствующего цилиндра и накопления горючей смеси во впускном тракте не происходит.
- Работа карбюратора зависит от его положения в пространстве. Например, большинство автомобильных карбюраторов работают с серьезными нарушениями при крене автомобиля уже в 15 градусов. У инжекторных систем такой зависимости нет.
- Работа карбюратора сильно зависит от атмосферного давления, что особенно критично при работе автомобильных двигателей в горах, а также для авиационных двигателей. У инжекторных систем такой зависимости нет.
Состав и функции системы подачи топлива
- транспортировка топлива, его фильтрация и создание давления в системе – выполняется механическими и гидравлическими устройствами;
- расчет количества и момента впрыска топлива, а также распределение его по цилиндрам – осуществляется электронными устройствами.
Топливная система автомобиля
В состав топливной системы входят следующие элементы:
- Бак – герметичная емкость для хранения топлива.
- Трубопроводы (прямой и обратный) – трубки и гибкие шланги, по которым осуществляется транспортировка топлива.
- Фильтры (грубой и тонкой очистки) – выполняют очистку от механических загрязнений.
- Регулятор давления – необходим для обеспечения заданного уровня давления.
- Насос – как правило, погружной, приводимый в движение электродвигателем.
- ТНВД – для систем непосредственного впрыска (дизельных двигателей).
- .