Принцип действия генератора постоянного напряжения

Разновидности СВ

СВ принято делить на 2 группы. Они классифицируются в зависимости от способа возбуждения. Различают СВ независимого типа (СВНТ) и зависимого (СВЗТ).

К СВНТ относят все возбудители, которые сопряжены с генераторным валом. По сути, они способны вырабатывать напряжение в независимом режиме.

За группу СВЗТ принимают возбудители, схватывающие вольтаж прямиком с концов основного генератора. Ток поступает через трансформаторы особого типа.

Более выгодно смотрятся СВНТ, так как в них выработка тока не зависит от электроцепи.

Интересный момент. На генах со слабой мощностью в качестве возбудителя применяются отдельные, независимые генераторы, способные вырабатывать ток. Они соединяется с валом основного гена (синхронного).

Другие преимущества СВНТ:

  • Высокий процент быстродействия;
  • Высокая скорость нарастания тока;
  • Возможность замены тиристоров, вышедших из строя, без остановки генератора.

Однако СВНТ имеют и недостатки, связанные с самим устройством возбудителя. К примеру, если быстрота повышения возбуждения не слишком высока.

Кроме того:

Слабыми в СВНТ выглядят контакты скользящего типа, так как напряжение к ним подводится через щетки.

Сегодня наиболее востребованы СВ с полупроводниковыми диодными мостами. Они построены по 3-фазной схеме, в них задействуется минимальное количество выстроенных по порядку тиристоров.

Что касается схем диодного моста, то они бывают 1-групповыми и 2-групповыми. Один выпрямитель внедрен в первом случае, два – во втором.

Токоподавателем в СВНТ является синхронный ген, нашедший место между индуктором и верхним кронштейном основного генератора.

СВЗТ менее надежна, чем первая система, так как работа возбудителя здесь полностью зависимая. Другими словами, возбудитель в этом случае будет работать только в том случае, если получит ток от сети. А в сети, как правило, часто возникают замыкания, нарушающие стабильное функционирование СВ. Получается лишняя нагрузка на СВЗТ, которая должна обеспечивать форсировку напряжения в обмотке.

Но СВЗТ в некоторых случаях имеют плюсы перед самостийными системами. Они выражаются простотой схемы. Недостатком же выступает, как и говорилось, непостоянство работы, что более всего заметно в высокомощных машинах.

По мнению экспертов, если подразумевается длительность ремонта, то лучше зарекомендуют себя СВЗТ.

Характеристический (реактивный) треугольник

Характеристический (реактивный) треугольник определяет реакцию якоря и падение напряжение в цепи якоря. Он строится для нахождения реакции якоря по экспериментальным данным и используется также для построения некоторых характеристик машины, если они не могут быть сняты экспериментально. Характеристический треугольник можно построить по экспериментальным данным с помощью х. х. х. и любой другой основной характеристики машины, а также по расчетным данным. Рассмотрим здесь его построение с помощью х. х. х. и х. к. з., для чего обратимся к рисунку 4, где изображены х. к. з. I = f (iв) (прямая 1) и начальная, прямолинейная часть х. х. х. U = f (iв) (прямая 2), проходящие через начало координат.

Построим характеристический треугольник для номинального тока машины Iа = I = Iн, которому на х. к. з. соответствует точка а и на оси абсцисс точка б (рисунок 4, а). Построим на прямой аб отрезок бв, равный в масштабе прямой 2 падению напряжения в цепи якоря Iн × Rа, и соединим точку в горизонтальной прямой с точкой г на х. х. х. Тогда треугольник бвг и будет характеристическим треугольником. Горизонтальный катет вг этого треугольника представляет собой намагничивающую силу реакции якоря в масштабе тока возбуждения, что можно доказать следующим образом.

Рисунок 4. Построение характеристического треугольника в случае размагничивающей (а) и намагничивающей (б) реакции якоря

Отрезок 0б на рисунке 4, а равен току iв, необходимому для получения при коротком замыкании тока I = Iн. В якоре при этом должна индуктироваться э. д. с. Eа = Iн × Rа, равная отрезку гд, для чего при холостом ходе требуется ток возбуждения 0д = iве. Таким образом, разность 0б – 0д = дб = iва между действительным током iв = 0б при коротком замыкании и током iве = 0д при холостом ходе может быть обусловлена только влиянием тока в якоре и должна поэтому выражать собой намагничивающую силу реакции якоря в масштабе тока возбуждения iв.

Рисунок 4, а соответствует случаю размагничивающей реакции якоря (iва больше 0), а рисунок 4, б – случаю намагничивающей реакции якоря (iва меньше 0). В последнем случае х. к. з., естественно, должна подниматься круче. Для других значений токов якоря (I ≠ Iн) катеты треугольника бвг изменяются практически пропорционально току якоря, так как нелинейность сопротивления щеточного контакта оказывает малое влияние.

Поскольку в условиях снятия х. к. з. магнитная цепь машины не насыщена, то построенный таким образом характеристический треугольник учитывает только продольную реакцию якоря, вызванную случайным или сознательным сдвигом щеток с геометрической нейтрали и отклонением коммутации от прямолинейной. При установке щеток на геометрической нейтрали катет треугольника iва = дб равен намагничивающей силе коммутационной реакции якоря (в масштабе iв) и характеризует качество коммутации (на рисунке 4, а – замедленная коммутация и на рисунке 4, б – ускоренная). Когда щетки стоят на нейтрали и коммутация прямолинейна, iва = дб = 0 и треугольник бвг вырождается в вертикальную прямую.

Для построения характеристического треугольника с учетом влияния поперечной реакции якоря можно воспользоваться х. х. х. и внешней, регулировочной или нагрузочной характеристикой. Обычно пользуются нагрузочной характеристикой.

Cамовозбуждение генератора постоянного тока

В том случае, если энергия, нужная для возбуждения машины, берется из якоря самого устройства, то эта МПТ будет машиной с самовозбуждением.

На схемах ниже МПТ с самовозбуждением магнитного потока: а – параллельное, в – последовательное, с – смешанное возбуждение.

Обмотки возбуждения и якоря для любых самовозбуждающихся машин подразделяются на три типа и классифицируются по соединению, это:

  1. Шунтовые – параллельное соединение обмоток.
  2. Сериесные – последовательное соединение.
  3. Компаудные – со смешанным соединением.

Некоторые типы современных двигателей, при разных типах присоединений в сеть обмоток, подразумевают прямое подключение возбуждающей обмотки в электрическую сеть.

Ток — возбуждение — генератор

Ток возбуждения генератора в нормальном режиме определяется с помощью векторной диаграммы напряжений и внешней характеристики преобразователя.

Ток возбуждения генератора в рассмотренной схеме устанавливается по максимальному грузу при наладке схемы и не изменяется в процессе работы.

Ток возбуждения генератора, проходя по обмоткам полюсов ротора генератора, создает магнитное поле ( см. рис. 21), которое замыкается через сердечник статора. При вращении ротора магнитное поле пересекает неподвижную обмотку статора и индуктирует в ней переменное напряжение.

С. хемы реле-регулятора РР-130.

Ток возбуждения генератора проходит по цепи: зажим Я генератора — последовательная 7 и ускоряющая 8 обмотки ограничителя тока — замкнутые контакты 9 ограничителя тока — выравнивающая обмотка / / регулятора напряжения — замкнутые контакты 10 регулятора напряжения — зажим Ш обмотки возбуждения 14 генератора — масса ( корпус) генератора.

Ток возбуждения генератора в ускоряющей обмотке УО совпадает по направлению с током нагрузки в последовательной обмотке, и обе обмотки совместно намагничивают сердечник.

Ток возбуждения генератора в начале испытаний увеличивается постепенно, ступенями, пока напряжение на якоре не достигнет 130 % номинального.

Ток возбуждения генератора составляет 1 — 3 процента тока якоря.

Если ток возбуждения генератора неизменный, а изменяется только сопротивление приемника, то будут изменяться ток статора, напряжение и мощность ( момент) генератора.

Возрастает ток возбуждения генераторов, а следовательно, увеличивается и величина рекуперативного тока.

Изменение тока возбуждения генератора при работе его на общую сеть не оказывает влияния на величину напряжения и отдаваемую активную мощность.

Регулирование тока возбуждения генератора можно производить практически от нуля при помощи реостата IP, включенного по потенциометри-ческой схеме.

Цепь тока возбуждения генератора: положительные щетки — масса — ярмо регулятора 1 -якорек 2 — контакты — выравнивающая обмотка ВО — зажим Ш генератора — обмотка возбуждения — отрицательные щетки.

Распределение мощностей между генераторами в зависимости от соотношения токов возбуждения двигателей при различных углах разворота 60.

Изменение токов возбуждения генераторов к существенному перераспределению активных мощностей генераторов не приводит, а влияет лишь на распределение и величину реактивной мощности.

Что такое СВ и АРВ

Система возбуждения гена – это комплекс различных устройств, включающих: возбудитель, АРВ, СГП, УБФВ, устройство развозбуждения, а также дополнительные тесто-измерители.

АРВ – это не что иное, как регулятор, функционирующий полностью на автомате. СГП – средство, которое гасит магнитное поле. УБФВ – устройство, благодаря которому осуществляется быстрая форсировка возбуждения.

Сам возбудитель является источником питания (ИП) обмотки постоянным напряжением. В данном случае ИП может быть сам ген совместно с полупроводниками и выпрямительным блоком (диодным мостом).

АРВ применяются в синхронном гене. Здесь они выполняют функцию повышения физической стабильности генерирующего устройства. Принято классифицировать АРВ на устройства с пропорциональным шагом и сильным шагом. Одни способны изменять токоэнергию по несоответствию статорного напряжения, а вторые – реагируют в более широком смысле этого слова.

Когда ток снижается, к примеру, при замыкании, предусмотрена форсировка. Она подразумевает скорое увеличение возбуждения, что влияет на остановку спадов напряжения и сохраняет устойчивость.

Когда происходит отключение генератора, что тоже может вызываться внутренними замыканиями, агрегат следует развозбудить. Для этого достаточно погасить магнитполе, что даст возможность уменьшить размеры повреждения статорной обмотки.

Погасить магнитполе – это, значит, быстрое уменьшить магнитпоток возбуждения гена до величины, близкой к 0. Одновременно с этим уменьшается ЭДС агрегата.

Гашение магнитполя осуществляется с помощью АГП – особых устройств-автоматов, действующих от реле. Именно они помогают активировать сопротивление.

В генерирующих устройствах, функционирующих по принципу тиристорвозбуждения, снижение магнитполя осуществляется методом переключения основных вентилей в инверторный порядок. Тем самым, сэкономленная в обмотке энергия, передастся возбудителю или диодному мосту.

Характеризуется СВ номинальным напряжением (НТ), но оно может быть разным.

  • 100 или 600 В, если речь идет о возбуждении на выводах обмотки.
  • 100 или 8000 А, если речь идет о НТ, находящимся непосредственно в обмотке, и соответствует нормальной, стандартной работе генератора.

Следует знать, что НТ возбудителя должен составлять доли процентов от НТ генератора. Как правило, считают значения в 0,2-0,6 процентов от номинальной мощности гена.

Что касается быстродействия возбудителя, то оно зависит от скорости нарастания силы тока на обмотке индуктора (ротора).

СВ (система возбуждения) обязана рассчитываться в зависимости от работы АРВ. Другими словами, без АРВ работа допускается, но только на время, нужное для ремонта или замены. В остальных случаях использование АРВ обязательно.

СВ обязана обеспечивать ток в продолжительном режиме, превышая НТ генератора не менее чем на 10 процентов.

СВ также бывает полупроводниковой. В этом случае она должна иметь РВС (режим внутреннего сохранения).

Важно, чтобы защитные устройства, обеспечивающие стабильность во время перенапряжений, были многократного действия

Состав системы возбуждения Что обеспечивает система возбуждения
трансформатор выпрямительный начальное возбуждение
трансформатор последовательный вольтодобавочный холостой ход
тиристорный преобразователь (ТВ 8-2000/) 050- 1У4) включение в сеть методом точной синхронизации в нормальных режимах и самосинхронизации в аварийных режимах
система охлаждения преобразователя работу ГГ в энергосистеме с нагрузками от холостого хода до номинальной и перегрузками
агрегат начального возбуждения (АН В-2) недовозбуждение в пределах устойчивой работы генератора
автоматический регулятор возбуждения (АУ1Г типа АРВ-СД) форсировку возбуждения по току и напряжению
панель гашения поля эффективное гашение поля
релейные панели развозбуждение при нормальных остановках агрегата

Обмотка — возбуждение — синхронная машина

Зависимость Е от отношения.

Обмотка возбуждения синхронных машин подключается к источнику постоянного тока. До недавнего времени для питания обмоток возбуждения применялись специальные генераторы постоянного тока — возбудители.

Структурная схема тири-сторного возбудителя синхронного двигателя ( питание от сети 380 В. СГ — схема гашения поля. СФ — схема фор-сировки возбуждения. АРВ — автоматический регулятор возбуждения. СП — схема пуска. СЗП — схема защиты пускового сопротивления. ФИУ — фазоимпульсное устройство. УУ — устройство управления. БП — блок питания. СЗК — схема защиты от коротких замыканий. СОТР — схема ограничения тока ротора. ДТР — датчик тока ротора. СУ — схема установок угла регулирования. К — герконное реле.

Обмотка возбуждения синхронных машин подключается к источнику постоянного тока.

Синхронная машина средней мощности.

Обмотка возбуждения синхронных машин располагается на роторе и питается постоянным током. В машинах с частотой вращения не более 1500 об / мин ( рис. 2) катушки обмотки возбуждения 3 состоят из большого числа витков. Они насажены на стальные сердечники, закрепленные на роторе. Катушка с сердечником образует полюс 7 ротора, и машины такой конструкции называют явнополюсными. Ток в обмотку возбуждения подается от возбудителя — генератора постоянного тока 12 или от выпрямителя через неподвижные щетки 11 и контактные кольца 10, закрепленные на валу 8 ротора. Сердечник статора б собирается ( шихтуется) из отдельных листов электротехнической стали.

Двухъярусная обмотка ( а. эквивалентный ток всей обмотки в момент, когда ток средней группы достигает максимальной величины ( б. диаграмма тока для участков X, Y и Z ( в.

Обмотка возбуждения синхронной машины также заменяется эквивалентным проводником. Этот проводник помещается приблизительно в середине сечения обмотки ( несколько ближе к стали), и через него проходит полный ток обмотки; в противоположность эквивалентному току статора, вдоль эквивалентного проводника он не меняется.

Обмотка возбуждения синхронных машин подключается к источнику постоянного тока.

Обмотку возбуждения явнополюеных синхронных машин выполняют так же, как и у машин постоянного тока, в виде катушек, размещаемых на сердечниках полюсов ротора. Провод наматывают на широкую сторону.

Обмотку возбуждения явнополюеных синхронных машин вы — Ттолняют так же, как и у машин постоянного тока, в виде катушек размещаемых на сердечниках полюсов-ротора. Провод наматывают на широкую сторону.

Схема электромашинной системы возбуждения крупной синхронной машины.

Для питания обмотки возбуждения синхронной машины необходим источник постоянного тока — возбудитель. Наиболее часто в качестве возбудителя используется электромашинный генератор постоянного тока ( см. § 64 — 12), якорь которого механически сопряжен с валом синхронной машины.

Постоянный ток в обмотку возбуждения синхронной машины может подаваться от специального генератора постоянного тока, установленного на валу машины и называемого возбудителем, или от сети через полупроводниковый выпрямитель.

Как правило, питание обмоток возбуждения синхронных машин постоянным током производится от генераторов постоянного тока, называемых в данном случае возбудителями. Раньше на электростанциях питание обмоток возбуждения всех генераторов переменного тока осуществлялось от общих шин возбуждения, на которые параллельно работало несколько возбудителей. Однако такой способ питания цепей теперь не находит применения. В настоящее время каждый генератор переменного тока снабжается собственным возбудителем, обычно механически соединенным непосредственно с генератором, а иногда приводимым во вращение электродвигателем или небольшим первичным двигателем, или тем и другим одновременно.

Влияние сдвига щеток

Cдвиг щеток с геометрической нейтрали сказывается в том, что возникает продольная реакция якоря, изменяющая поток полюсов. Поток добавочных полюсов будет индуктировать э. д. с. не в коммутируемых секциях, а в рабочих секциях параллельных ветвей якоря. При повороте щеток против направления вращения якоря (рисунок 10) это вызовет увеличение э. д. с. якоря, а при сдвиге по направлению вращения – уменьшение э. д. с. В первом случае внешняя характеристика (смотрите рисунок 5) с увеличением I будет падать более круто. При наличии добавочных полюсов в обоих случаях возникает расстройство коммутации.

Влияние сдвига щеток на другие характеристики нетрудно анализировать подобным же образом.

Характеристика холостого хода генератора постоянного тока независимого возбуждения

При снятии характеристики  U= F(IВ) генератор работает в режиме х.х. (Ia = 0). Установив номинальную частоту вращения и поддерживая ее неизменной, постепенно увеличивают ток в обмотке возбуждения Iв от нулевого значения до +Iв = Oa, при котором напряжение х.х. U= 1.15Uном . Получают данные для построения кривой 1 (рис. 28.2, б). Начальная ордината кривой 1 не равна нулю, что объясняется действием небольшого магнитного потока остаточного магнетизма, сохранившегося от предыдущего намагничивания машины. Уменьшив ток возбуждения до нуля, и изменив его направление, постепенно увеличивают ток в цепи возбуждения до -Iв = Oб. По­лученная таким образом кривая 2 называется нисходящей ветвью характеристики. В первом квадранте кривая 2 располагается вы­ше кривой 1. Объясняется это тем, что в процессе снятия кривой 1 произошло увеличение магнитного потока остаточного намагни­чивания. Далее опыт проводят в обратном направлении, т. е. уменьшают ток возбуждения от -Iв = Oбдо Iв = 0, а затем увеличи­вают его до значения +Iв = Oa. В результате получают кривую 3, называемую восходящей ветвью характеристики х.х. Нисходящая и восходящая ветви характеристики х.х. образуют петлю намагни­чивания. Проведя между кривыми 2 и 3 среднюю линию 4, полу­чим расчетную характеристику х.х.

Прямолинейная часть характеристики х.х. соответствует нена­сыщенной магнитной системе машины. При дальнейшем увеличе­нии тока сталь машины насыщается и характеристика приобретает криволинейный характер. Зависимость U= F(IВ)  дает возможность судить о магнитных свойствах машины.

Cамовозбуждение генератора постоянного тока

В том случае, если энергия, нужная для возбуждения машины, берется из якоря самого устройства, то эта МПТ будет машиной с самовозбуждением.

На схемах ниже МПТ с самовозбуждением магнитного потока: а – параллельное, в – последовательное, с – смешанное возбуждение.

Обмотки возбуждения и якоря для любых самовозбуждающихся машин подразделяются на три типа и классифицируются по соединению, это:

  1. Шунтовые – параллельное соединение обмоток.
  2. Сериесные – последовательное соединение.
  3. Компаудные – со смешанным соединением.

Некоторые типы современных двигателей, при разных типах присоединений в сеть обмоток, подразумевают прямое подключение возбуждающей обмотки в электрическую сеть.

Как происходит возбуждение в гене

Электроэнергия или электрическая сила в генераторе возникает тогда, когда сквозь магнитный поток внутри перемещается проводник. Ток возникает также и в том случае, когда перемещается магнит, а проводник остается неподвижным.

Без теоретических объяснений и выводов, можно представить себе возбуждение гена так:

  • На обмотку гена подается электричество с АКБ. Электрический ток первыми принимают щетки и медные кольца.
  • Реле отсечки – специальная штука, которая не дает аккумулятору разрядиться при остановке генератора. Когда водитель включает зажигание, то напряжение поступает на реле отсечки, оно притягивает внутренние элементы генератора, тем самым, замыкаются контакты. Получается, что реле в этом случае – эффективный переходник, соединяющий обмотку гена с аккумулятором.
  • На приборной панели в салоне автомобиля предусмотрена лампочка. Она дает понять водителю, когда начинается зарядка геном АКБ. Когда включается зажигание, она горит до тех пор, пока напряжение идет с аккумулятора и гаснет, когда процесс энергополучения идет обратно.

Основные неисправности генераторов переменного тока

Обрыв обмотки возбуждения

При этой неисправности в обмотке статора индуктируется э. д. с. до 3—4 В, обусловленная остаточным магнетизмом стали ротора.

Нарушение контакта в щеточном узле вследствие окисления или замасливания контактных колец генератора, сильного износа или зависания щеток в щеткодержателях, уменьшения упругости пружин щеткодержателей и т. п.

Неисправность сопровождается увеличением сопротивления цепи возбуждения генератора, поэтому снижается сила тока возбуждения, а вместе ё этим падает мощность генератора.

Напряжение генератора до номинальной величины достигает только при повышенной частоте вращения ротора.

Витковое замыкание

в катушке обмотки возбуждения вызывается теми же причинами и приводит к аналогичным последствиям, что и в генераторах постоянного тока.

Определяется витковое замыкание измерением сопротивления обмотки омметром.

Замыкание обмотки возбуждения на корпус

чаще всего происходит в местах вывод концов катушек к контактным кольцам. Короткозамкнутая катушка обесточивается, магнитный поток возбуждения резко снижается, поэтому напряжение генератора станет меньшим и ток от него во внешнюю цепь не поступает.

Эту неисправность определяют при помощи вольтметра или контрольной лампы напряжением 220—500 В, подключением одного проводника на железо ротора, а другого — на контактное кольцо.

Если в течение 1 мин тока в цепи не будет, то изоляция обмотки хорошая.

Обрыв в цепи фазовой обмотки статора.

При наличии обрыва соединительного провода одной фазы генератора к зажиму выпрямителя фаза выключается, а поэтому значительно увеличивается сопротивление обмотки статора, что снижает мощность генератора.

При обрыве двух фаз прерывается вся цепь обмотки статора, и генератор не будет работать.

При разобранном генераторе для определения обрыва в фазовой обмотке статора необходимо поочередно подключать к аккумуляторной батарее через лампочку или вольтметр по две фазы обмотки.

Наличие обрыва выключает цепь, и тока в ней не будет.

Замыкание обмотки статора на корпус

происходит вследствие механического или теплового повреждения изоляции обмотки и выводных зажимов. Неисправность значительно снижает полезную мощность генератора в результате короткого замыкания неисправных фазовых обмоток через выпрямитель и корпус.

Эти неисправности определяются контрольной лампой напряжением 220—500 В подключением одного проводника на сердечник статора, а другого — на один из зажимов обмотки статора. Дефектную изоляцию заменяют новой.

Кроме названных неисправностей, в генераторах постоянного и переменного тока возникают также неисправности механического характера, например износ и разрушение подшипников, износ шеек вала якоря (ротора), разработка шпоночной канавки вала и шкива, повреждение резьбы на валу и в гайках и др.

Выявление и устранение подобных неисправностей не представляет больших трудностей.

Основные неисправности выпрямителей генератора

Замыкание на корпус зажима «+».

Эта неисправность вызывает закорачивание выпрямителя, и в цепи — обмотка статора генератора — выпрямитель —устанавливается большая сила тока, в результате чего происходит их перегрев и возможно разрушение изоляция обмотки и пробой запирающего слоя диодов выпрямителя.

Пробой диодов

чаще всего происходит вследствие увеличения напряжения генератора, что может быть при обрыве основной обмотки регулятора напряжения, обрыве провода, соединяющего реле-регулятор с корпусом, неправильной регулировке регулятора напряжения, отсоединении провода от зажима «+» генератора.

Кроме того, пробой диодов происходит при перегреве выпрямителя током большой силы, который проходит через них, а также при механическом повреждении диодов, при неправильном соединении зажимов выпрямителя (когда минусовой зажим соединяют не с корпусом, а с зажимом реле-регулятора).

В месте пробоя происходит расплавление покровного слоя металла, в результате чего образуется короткозамкнутый участок между электродами диода.

В случае пробоя диодов будет большая сила разрядного тока при неработающем генераторе.

Старение диодов.

С течением времени диоды расформировываются, стареют, что повышает сопротивление в цепи выпрямленного тока. Эта Неисправность вызывает увеличение падения напряжения на зажимах диодов при прохождении тока в прямом направлении и увеличение силы обратного тока. В результате аккумуляторная батарея будет недозаряжаться.

Нагрузочная характеристика

Нагрузочная характеристика U = f (iв) при I = const и n = const (кривая 2 на рисунке 9) по виду схожа с х. х. х. (кривая 1 на рисунке 9) и проходит несколько ниже х. х. х. вследствие падения напряжения в цепи якоря и влияния реакции якоря. Х. х. х. представляет собой предельный случай нагрузочной характеристики, когда I = 0. Обычно нагрузочную характеристику снимают при I = Iн.

Поясним, как с помощью характеристик 1 и 2 рисунка 9 можно построить характеристический треугольник. Пусть 0а соответствует значению U, для которого желательно построить треугольник (например, U = Uн). Тогда проведем горизонтальную линию аб и от точки б на нагрузочной характеристике отложим вверх отрезок бв = I × Rа, где I – ток, при котором снята нагрузочная характеристика. Проведя из точки в горизонтальный отрезок прямой до пересечения в точке г с х. х. х., получим горизонтальный катет гв искомого треугольника гвб. Доказательство справедливости такого построения можно развивать по аналогии с доказательством построения внешней характеристики (смотрите рисунок 6).

Рисунок 9. Нагрузочная характеристика генератора независимого возбуждения

Если построенный таким или другим способом характеристический треугольник передвигать на рисунке 9 параллельно самому себе так, чтобы его вершина г скользила по х. х. х., то его вершина б очертит нагрузочную характеристику (штриховая кривая на рисунке 9). Эта характеристика несколько разойдется с опытной характеристикой 2, так как размер катета гв будет меняться вследствие изменений условий насыщения.

Точка д на рисунке 9 соответствует короткому замыканию генератора.

Все характеристики генераторов можно изобразить как в абсолютных величинах, так и в относительных единицах. В последнем случае характеристики однотипных машин, хотя бы и разной мощности, построенные в относительных единицах, мало отличаются друг от друга.

Рисунок 10. Сдвиг щеток с нейтрали при наличии добавочных полюсов
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector